神戸大 積分 - 質問解決D.B.(データベース)

神戸大 積分

問題文全文(内容文):
全ての実数$x$で$f(x)=|x^2-1|+\displaystyle \int_{0}^{ 2 } f(x) dx$が成り立つ

(1)
$f(x)$を求めよ

(2)
$\displaystyle \int_{0}^{ a } f(x) dx=\displaystyle \frac{4}{3}$を満たす正の実数$a$

出典:1981年神戸大学 過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
全ての実数$x$で$f(x)=|x^2-1|+\displaystyle \int_{0}^{ 2 } f(x) dx$が成り立つ

(1)
$f(x)$を求めよ

(2)
$\displaystyle \int_{0}^{ a } f(x) dx=\displaystyle \frac{4}{3}$を満たす正の実数$a$

出典:1981年神戸大学 過去問
投稿日:2019.06.12

<関連動画>

大学入試問題#453「落とせない問題」 信州大学(2022) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#対数関数#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{e}^{e^2} \displaystyle \frac{dx}{x(1+log\ x^3)log\ x}$

出典:2022年信州大学 入試問題
この動画を見る 

2021早稲田大 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^4-x^2+1$
①$x^6$を$f(x)$で割った余りを求めよ.
②$x^{2021}$を$f(x)$で割った余りを求めよ.
③$(x^2-1)^{3k}-1$は$f(x)$で割り切れることを示せ.$k$は自然数である.

2021早稲田(理)
この動画を見る 

名古屋大 微分/大小比較 東大大学院数学科卒の杉山さん代講

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ

出典:2004年名古屋大学 過去問
この動画を見る 

大学入試問題#249 早稲田大学(2014) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a,b$を正の定数
$\displaystyle \int_{0}^{2\pi}|a\ \sin\ x+b\ \cos\ x|dx$を求めよ。

出典:2014年早稲田大学 入試問題
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(3)〜三角関数への置き換えによる最大値の求め方

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)$0 \leqq \theta \lt 2\pi$のとき、関数$f(\theta)=2\cos\theta(\sqrt3\sin\theta+\cos\theta)$の最大値は
$\boxed{ ケ}$である。
$g(x,y)=\frac{2\sqrt3xy+2x^2}{x^4+2x^2y^2+y^4+1}$について考える。aを正の定数とし、点(x,y)が
円$x^2+y^2=a^2$上を動くとき、g$(x,y)$の最大値はaを用いて$\boxed{コ}$と表せる。
また、点(x,y)がxy平面全体を動くとき、g(x,y)の最大値は$\boxed{サ}$である。

2021北里大学医学部過去問
この動画を見る 
PAGE TOP