あれですよ、あれ - 質問解決D.B.(データベース)

あれですよ、あれ

問題文全文(内容文):
31!+2!+3!+42!+3!+4!+53!+4!+5!+
+20222020!+2021!+2022!
これを解け.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
31!+2!+3!+42!+3!+4!+53!+4!+5!+
+20222020!+2021!+2022!
これを解け.
投稿日:2022.04.24

<関連動画>

福田の入試問題解説〜北海道大学2022年理系第2問〜ベクトルと漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#数列#平面上のベクトルと内積#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
aはa1を満たす正の実数とする。xy平面上の点P1,P2,,Pn,および
Q1,Q2,,Qn,が、すべての自然数nについて
PnPn+1=(1a)PnQn,  QnQn+1=(0,an1a)
を満たしているとする。またPnの座標を(xn,yn)とする。
(1)xn+2a, xn, xn+1で表せ。
(2)x1=0, x2=1のとき、数列{xn}の一般項を求めよ。
(3)y1=a(1a)2, y2y1=1のとき数列{yn}の一般項を求めよ。

2022北海道大学理系過去問
この動画を見る 

2022都立入試 整数問題証明(11の倍数)

アイキャッチ画像
単元: #数学(中学生)#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022都立入試 整数問題証明に関して解説していきます.
この動画を見る 

福田の数学〜ポリアの壺とは逆の試行における確率の極限〜杏林大学2023年医学部第1問後編〜確率漸化式と極限

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
複数の玉が人った袋から玉を 1 個取り出して袋に戻す事象を考える。どの玉も同じ確率で取り出されるものとし、nを自然数として、以下の間いに答えよ。
(1) 袋の中に赤玉 1 個と黒玉 2 個が入っている。この袋の中から玉を 1 個取り出し、取り出した玉と同じ色の玉をひとつ加え、合計 2 個の玉を袋に戻すという試行を繰り返す。n回目の試行において赤玉が取り出される確率をpnとすると、p2=, p3=
( 2 )袋の中に赤玉 3 個と黒玉 2 個が人っている。この袋の中から玉を 1 個取り出し、赤玉と黒玉を 1 個ずつ、合計 2 個の球を袋に戻す試行を繰り返す。n回目の試行において赤玉が取り出される確率をpnとすると、次式が成り立つ。
p2=オカキク, p3=ケコサシ
n回目の試行開始時点で袋に人っている玉の個数MnMn=n+であり、この時点で袋に入っていると期待される赤玉の個数RnRn=Mn×Pnと表される。n回目の試行において、黒玉が取り出された場合にのみ、試行後の赤玉の個数が施行前と比べて個増えるため、n+ 1 回目の試行開始時点で袋に入っていると期待される赤玉の個数はRn+1=Rn+(1Pn)×となる。したがって、
Pn+1=n+n+×Pn+1n+
が成り立つ。このことから、(n+3)×(n+)×(Pn)がnに依らず一定となる事が分かり、limnPn=と求められる。

2023杏林大学医過去問
この動画を見る 

福井大(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
a1=1,a2=3であり,n2とする.
an+14n+2n+1an+4n4nan1=0

(1)bn=an+12nn+1an(n1),bnnで表せ.
(2)anを求めよ.

福井大(医)過去問
この動画を見る 

山形大(医)確率 等比数列の和 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
山形大学過去問題
箱に白玉が3個、赤玉が2個。1個とり出し、白なら戻す。赤なら戻さない。
2個目の赤が出たら終了。n回目に終わる確率を求めよ。
この動画を見る 
PAGE TOP preload imagepreload image