2023高校入試数学解説49問目 正負の数の計算 神奈川県の最初の一問 - 質問解決D.B.(データベース)

2023高校入試数学解説49問目 正負の数の計算  神奈川県の最初の一問

問題文全文(内容文):
1から4の中から1つ選べ
-1-(-7)
1.-8
2.-6
3.6
4.8
2023 神奈川県 最初の1問
単元: #数学(中学生)#中1数学#正の数・負の数#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
1から4の中から1つ選べ
-1-(-7)
1.-8
2.-6
3.6
4.8
2023 神奈川県 最初の1問
投稿日:2023.02.14

<関連動画>

高校入試 図形 明大中野

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
BD=?
*図は動画内参照

明治大学付属中野高等学校
この動画を見る 

【中1 数学】中1-22 文字式と数の乗法・除法②

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
分数の___から落ちたら、
必ず①___をつけよう!
【レベル3】
②$5(x-2)-2(3x-1)=$
③$-2(3a+1)-(a-5)=$
④$-\displaystyle \frac{1}{2}(4)(+6)-\displaystyle \frac{2}{3}(-3)(-9)=$
【レベル4】
⑤$\displaystyle \frac{2x-5}{3} \times (-6)=$
⑥$12 \times \displaystyle \frac{-x+3}{2}=$
⑦$\displaystyle \frac{2x+3}{8} \times 20=$
この動画を見る 

動体視力と数学を鍛える女子力~全国入試問題解法 #Shorts

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
四角形$ABCD$の2つの対角線$AC,BD$の交点を$H$とする.
$OH$の長さを求めなさい.

山形県高校過去問
この動画を見る 

空間図形:東京工業大学附属科学技術高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#高校入試過去問(数学)#東京工業大学附属科学技術高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京工業大学附属科学技術高等学校

展開図の 三角柱の体積 を求めなさい。
※別解付き!
※図は動画内参照
この動画を見る 

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 
PAGE TOP