福田の数学〜部分積分と極限のコンボ〜明治大学2023年全学部統一Ⅲ第2問〜部分積分と極限 - 質問解決D.B.(データベース)

福田の数学〜部分積分と極限のコンボ〜明治大学2023年全学部統一Ⅲ第2問〜部分積分と極限

問題文全文(内容文):
$\Large{\boxed{2}}$ $t$>0 に対して、次の2つの定積分を考える。
$I$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\sin xdx$, $J$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx$
部分積分を用いれば$I$=$\boxed{\ \ ア\ \ }$-$tJ$, $J$=$\boxed{\ \ イ\ \ }$+$tI$ が成り立つことが分かるので、
$I$=$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$, $J$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ エ\ \ }}$
を得る。したがって、$\displaystyle\lim_{t \to \infty}\frac{\log\boxed{\ \ エ\ \ }}{t}$=0 を用いれば、
$\displaystyle\lim_{t \to \infty}\frac{1}{t}\log\left(\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx-\frac{t}{\boxed{\ \ エ\ \ }}\right)$=$\boxed{\ \ カ\ \ }$
となる。
$\boxed{\ \ ア\ \ }$、$\boxed{\ \ イ\ \ }$、$\boxed{\ \ ウ\ \ }$の解答群
⓪-1 ①1 ②2-$\pi$ ③$\pi$ ④1-$t$ ⑤1+$t$ 
⑥1-$t^2$ ⑦1+$t^2$ ⑧$-e^{-\frac{\pi}{2}t}$ ⑨$e^{-\frac{\pi}{2}t}$ 
$\boxed{\ \ ウ\ \ }$、$\boxed{\ \ オ\ \ }$の解答群
⓪$t$ ①1 ②-1$-te^{-\frac{\pi}{2}t}$ ③-1$+te^{-\frac{\pi}{2}t}$ ④1$-te^{-\frac{\pi}{2}t}$ 
⑤1$+te^{-\frac{\pi}{2}t}$ ⑥-$t$-$e^{-\frac{\pi}{2}t}$ ⑦-$t$+$e^{-\frac{\pi}{2}t}$ ⑧$t$-$e^{-\frac{\pi}{2}t}$ ⑨$t$+$e^{-\frac{\pi}{2}t}$
$\boxed{\ \ カ\ \ }$の解答群
⓪0 ①$-\frac{\pi}{2}$ ②$-\frac{\pi}{3}$ ③$-\frac{\pi}{4}$ ④$-\frac{\pi}{6}$ ⑤$-\frac{\pi}{12}$ ⑥$\frac{\pi}{6}$ 
⑦$\frac{\pi}{4}$ ⑧$\frac{\pi}{3}$ ⑨$\frac{\pi}{2}$ 
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#積分とその応用#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $t$>0 に対して、次の2つの定積分を考える。
$I$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\sin xdx$, $J$=$\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx$
部分積分を用いれば$I$=$\boxed{\ \ ア\ \ }$-$tJ$, $J$=$\boxed{\ \ イ\ \ }$+$tI$ が成り立つことが分かるので、
$I$=$\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$, $J$=$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ エ\ \ }}$
を得る。したがって、$\displaystyle\lim_{t \to \infty}\frac{\log\boxed{\ \ エ\ \ }}{t}$=0 を用いれば、
$\displaystyle\lim_{t \to \infty}\frac{1}{t}\log\left(\displaystyle\int_0^{\frac{\pi}{2}}e^{-tx}\cos xdx-\frac{t}{\boxed{\ \ エ\ \ }}\right)$=$\boxed{\ \ カ\ \ }$
となる。
$\boxed{\ \ ア\ \ }$、$\boxed{\ \ イ\ \ }$、$\boxed{\ \ ウ\ \ }$の解答群
⓪-1 ①1 ②2-$\pi$ ③$\pi$ ④1-$t$ ⑤1+$t$ 
⑥1-$t^2$ ⑦1+$t^2$ ⑧$-e^{-\frac{\pi}{2}t}$ ⑨$e^{-\frac{\pi}{2}t}$ 
$\boxed{\ \ ウ\ \ }$、$\boxed{\ \ オ\ \ }$の解答群
⓪$t$ ①1 ②-1$-te^{-\frac{\pi}{2}t}$ ③-1$+te^{-\frac{\pi}{2}t}$ ④1$-te^{-\frac{\pi}{2}t}$ 
⑤1$+te^{-\frac{\pi}{2}t}$ ⑥-$t$-$e^{-\frac{\pi}{2}t}$ ⑦-$t$+$e^{-\frac{\pi}{2}t}$ ⑧$t$-$e^{-\frac{\pi}{2}t}$ ⑨$t$+$e^{-\frac{\pi}{2}t}$
$\boxed{\ \ カ\ \ }$の解答群
⓪0 ①$-\frac{\pi}{2}$ ②$-\frac{\pi}{3}$ ③$-\frac{\pi}{4}$ ④$-\frac{\pi}{6}$ ⑤$-\frac{\pi}{12}$ ⑥$\frac{\pi}{6}$ 
⑦$\frac{\pi}{4}$ ⑧$\frac{\pi}{3}$ ⑨$\frac{\pi}{2}$ 
投稿日:2023.11.08

<関連動画>

【短時間でマスター!!】円の方程式(中心と半径)の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学2B
円の方程式
中心と半径の求め方について解説します。

次の方程式はどのような図形を表すか。
①$x^2+y^2+2y-3=0$
②$x^2+y^2+4x-6y-4=0$
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART2)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

福田のおもしろ数学077〜3通りの解法を考えよう〜4変数の式の最大値

アイキャッチ画像
単元: #数Ⅱ#式と証明#平面上のベクトル#図形と方程式#三角関数#恒等式・等式・不等式の証明#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$a^2$+$b^2$=9, $c^2$+$d^2$=16 のとき$ab$+$cd$ の最大値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(4)〜円と接線の長さ

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)円$x^2$+$y^2$-$4x$+$10y$+11=0 を$C$とするとき、円$C$の中心は$\boxed{\ \ オ\ \ }$であり、半径は$\boxed{\ \ カ\ \ }$である。また、この円$C$には点P(3,2)から2本の接線を引くことができるが、その接点の1つをAとする。このとき、線分APの長さはAP=$\boxed{\ \ キ\ \ }$である。
この動画を見る 

気が付けば一瞬!

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
Aの座標は?
*図は動画内参照
この動画を見る 
PAGE TOP