#奈良教育大学(2008) #定積分 #Shorts - 質問解決D.B.(データベース)

#奈良教育大学(2008) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x}{1+x^2} dx$

出典:2008年奈良教育大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} \displaystyle \frac{x}{1+x^2} dx$

出典:2008年奈良教育大学
投稿日:2024.05.10

<関連動画>

2023年東工大の整数問題!86400!?大きい値をどう扱うか【東京工業大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
方程式 $(x^{3}-x)^{2}(y^{3}-y)$=86400

を満たす整数の組$(x,y)$をすべて求めよ。
この動画を見る 

福田の数学〜千葉大学2024年理系第6問〜最小値と方程式の解と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x)=e^x+e^{-2x}$ について、次の問いに答えよ。
$(1)$ 関数 $f(x)$ の最小値を求めよ。
$(2)$ $f(x)=2$ となる $x$ の値をすべて求めよ。
$(3)$ $(2)$ で求めた $x$ の値のうち最小のものを $a_1$ 、最大のものを $a_2$ とする。 $y=f(x)$ のグラフ、 $x$ 軸、直線 $x=a_1$、直線 $x=a_2$ で囲まれる図形を $x$ 軸の周りに $1$ 回転してできる立体の体積を求めよ。
この動画を見る 

大学入試問題#97 学習院大学(2003) 整数問題 帰納法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#学習院大学
指導講師: ますただ
問題文全文(内容文):
$n$:自然数
$11^{n+1}+12^{2n-1}$は$19$で割り切れることを示せ

出典:2003年学習院大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(2)〜3項間漸化式の解法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)数列$\{a_n\}$が次の条件を満たしている。

$a_1=a_{2025}=0,a_{n+1}-2a_n+a_{n-1}=-1 \ (n=2,3,4,\cdots)$

このとき、一般項$a_n$は$a_n=\boxed{イ}$である。

$2025$年早稲田大学商学部過去問題
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(3)〜アポロニウスの円と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)$xy$平面上において、点Pは2点$A(0,0),\ B(7,0)$に対して$AP:BP=3:4$
を満たす。
$(\textrm{i})$点Pの軌跡の方程式は$\boxed{\ \ エ\ \ }$である。
$(\textrm{ii})$点Pの軌跡を境界線とする2つの領域のうち、点Aを含む領域と、
不等式$y \leqq \sqrt3|x+9|$の表す領域の共通部分の面積は$\boxed{\ \ オ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP