【ルーチン】連立方程式の解き方《後編》~【行列のできる】 - 質問解決D.B.(データベース)

【ルーチン】連立方程式の解き方《後編》~【行列のできる】

問題文全文(内容文):
【ルーチン】連立方程式の解き方《後編》

$\begin{eqnarray}
\left\{
\begin{array}{l}
ax + by = l \\
cx + dy = m
\end{array}
\right.
\end{eqnarray}$

$ \iff $ $ \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} $$\dbinom{ x }{ y }=\dbinom{ l }{ m }$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
【ルーチン】連立方程式の解き方《後編》

$\begin{eqnarray}
\left\{
\begin{array}{l}
ax + by = l \\
cx + dy = m
\end{array}
\right.
\end{eqnarray}$

$ \iff $ $ \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} $$\dbinom{ x }{ y }=\dbinom{ l }{ m }$
投稿日:2020.12.02

<関連動画>

【テスト対策・中2】2章-2

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
ax+by=-11 \\
bx-ay=13
\end{array}
\right.
\end{eqnarray}$の解が$x=3,y=-1$であるとき,
$a,b$の値を求めなさい.

②連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+4y=2 \\
ax+by=1
\end{array}
\right.
\end{eqnarray}$の解の$x$と$y$を入れかえると,
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+y=-1 \\
ax-by=1
\end{array}
\right.
\end{eqnarray}$の解になる.
このとき,定数$a,b$の値を求めなさい.
この動画を見る 

【中学数学】式の計算:等式変形マスターへの道 3発目!『カッコは取ってから編』 l=2(a+b)をb=の形にしましょう。

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 理数個別チャンネル
問題文全文(内容文):
l=2(a+b)をb=の形にしましょう。
この動画を見る 

発想の転換な動体視力と数学~全国入試問題解法 #Shorts

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
グラフを利用して解を求めよ.
$\begin{eqnarray}
\left\{
\begin{array}{l}
y=x+6 \\
x+2y=6
\end{array}
\right.
\end{eqnarray}$

青森県高校過去問
この動画を見る 

2通りの解説!!

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
ABCDは正方形
△EFG=?
*図は動画内参照
この動画を見る 

【高校受験対策/数学/関数1】交点→面積(王道パターン)

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で、直線ℓは関数y=3x+9のグラフ、
直線mは関数y=-x+5のグラフです。
また、 y軸と直線ℓ、直線mとの交点をそれぞれA、Bとし、
直線ℓと直線mの交点をPとします。
ただし、座標の 1目もりを1cmとします。

①ABの長さは?

②点Pの座標は?

③△PABの面積は?

④直線上に点Qをとります。
点Qから軸に平行な直線をひき、X軸との交点をRとする。
また、点Qから X軸に平行な直線をひき、直線との交点をSとし、 点Sからy軸に平行な直線をひき、X軸との交点をTとします。
四角形QRTSの周の長さが14cmになるとき、 Qの座標をすべて求めよう!
※図は動画内参照
この動画を見る 
PAGE TOP