福田の一夜漬け数学〜図形と方程式〜軌跡(7)切り取られる弦の中点の軌跡(後編)、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜軌跡(7)切り取られる弦の中点の軌跡(後編)、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 点$A(3,0)$を通る直線と円$(x-1)^2+y^2=1$ が異なる2点$P,Q$で
交わる時線分$PQ$の中点$M$の軌跡を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$A(3,0)$を通る直線と円$(x-1)^2+y^2=1$ が異なる2点$P,Q$で
交わる時線分$PQ$の中点$M$の軌跡を求めよ。
投稿日:2018.08.21

<関連動画>

福田の数学〜明治大学2024全学部統一IⅡAB第1問(1)〜接線と法線の方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の放物線 $y=2x^2-1$ を考える。 $t$ を $0$ でない定数とするとき、放物線上の点 $\mathrm{P}(t,2t^2-1)$ における接線 $l$ の方程式は
$y=\fbox{ア}x $$- \fbox{イ}t^2 $$- \fbox{ウ}$
である。点 $\mathrm{P}$ を通りこの接線 $l$ に直交する直線を点 $\mathrm{P}$ における法線と呼ぶことにすると、この法線の方程式は
$y=\fbox{エ}x $$+ \fbox{オ}t^2 $$- \frac{\fbox{カ}}{\fbox{キ}}$ である。

ア、エの解答群は動画内参照。
この動画を見る 

福田のおもしろ数学113〜1分チャレンジ〜連立方程式を解こう

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の連立方程式を解け。ただし、$a$,$b$,$c$は0ではない異なる実数とする。
$\begin{array}{1}
a^3x+a^2y+az=1 ...①\\
b^3x+b^2y+bz=1 ...②\\
c^3x+c^2y+cz=1 ...③\\
\end{array}$
この動画を見る 

00兵庫県教員採用試験(数学:4番 対数)

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#指数関数と対数関数#恒等式・等式・不等式の証明#軌跡と領域#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
4⃣$log_xy+2log_yx \leqq 3$
をみたす(x,y)の存在する領域を図示せよ
この動画を見る 

#三重大学医学部2023#不定積分_49

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#三重大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} x \ \log (x+1)\ dx$を解け.

2023三重大学医学部過去問題
この動画を見る 

数学「大学入試良問集」【10−2 中点の軌跡】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$k$を実数とする次の2つの方程式に関し、以下の各問いに各問いに答えよ。
$y=x^2-2x-2$ ・・・①
$y=kx-(k^2+2)$ ・・・②
(1)
式①と式②の表すグラフが2点で交わるための、$k$の値の範囲を求めよ。

(2)
2つの交点を$A,B$とすると、線分$AB$の中点$C$の座標を$k$を用いて表せ。

(3)
$k$の値を変化させるとき、点$C$の軌跡を表す方程式を求め、その式の成り立つ$x$の範囲を求めよ。
この動画を見る 
PAGE TOP