ε N論法 #7 a_n ≧ b_n - 質問解決D.B.(データベース)

ε N論法 #7 a_n ≧ b_n

問題文全文(内容文):
数列{$a_n$},{$b_n$}は各$n$において
$a_n \geqq b_n$をみたす
$\displaystyle \lim_{n\to\infty} b_n=+\infty$
$\displaystyle \lim_{n\to\infty} a_n=+\infty$
$ε N$論法で証明せよ.
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
数列{$a_n$},{$b_n$}は各$n$において
$a_n \geqq b_n$をみたす
$\displaystyle \lim_{n\to\infty} b_n=+\infty$
$\displaystyle \lim_{n\to\infty} a_n=+\infty$
$ε N$論法で証明せよ.
投稿日:2021.06.14

<関連動画>

【高校数学】 数Ⅱ-92 三角関数の性質③

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。

①$\sin \displaystyle \frac{7}{3}π$

②$\cos \displaystyle \frac{11}{4}π$

③$\tan \displaystyle \frac{19}{4}π$

④$\sin (-\displaystyle \frac{π}{6})$

⑤$\cos -\displaystyle \frac{π}{3}$

⑥$\tan (-\displaystyle \frac{π}{6})$
この動画を見る 

東京医科大 4次方程式

アイキャッチ画像
単元: #解と判別式・解と係数の関係
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021東京医科大学過去問題

$x^4+11x^3+31x^2+11x+1=0$の4つの解を,$\alpha,\beta,\gamma,\delta$とする.
下の値を求めよ.

①$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\gamma}+\dfrac{1}{\delta}$

②$\alpha^2+\beta^2+\gamma^2+\delta^2$

③$\alpha^3+\beta^3+\gamma^3+\delta^3$
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(4)直線群と2次方程式の解、高校2年生

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#2次関数とグラフ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 2直線4x+3y+2=0 \cdots①, 5x-2y-3=0 \cdots②の交点を通り、\\
点A(-1,2)を通る直線の方程式を求めよ。\\
\\
{\Large\boxed{2}} 2次方程式x^2-ax-2a-1=0 について次の条件を満たすaの範囲を定めよ。\\
(1)-1 \lt x \lt 2 の範囲に異なる2つの実数解をもつ。\\
(2)少なくとも1つ-1 \lt x \lt 2 の範囲に実数解をもつ。
\end{eqnarray}
この動画を見る 

【数Ⅱ】図形と方程式:通過領域の基本<その2>順像法

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aが全ての実数を動くとき、$y=x^2+ax^a$が通りうる(x,y)全体の領域を図示せよ。
頭の中でグラフを動かそう!
この動画を見る 

対数の近似値 立命館

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_{10}7$を小数第2位まで求めよ.
$\log_{10}2=0.3010$,
$\log_{10}3=0.4771$

立命館大過去問
この動画を見る 
PAGE TOP