京都大 微分 合成関数 Mathematics Japanese university entrance exam Kyoto University - 質問解決D.B.(データベース)

京都大 微分 合成関数 Mathematics Japanese university entrance exam Kyoto University

問題文全文(内容文):
1993年 国立大学法人京都大学

$f(x)=x^3-3ax$

$(1)f(x)=t$が相違3実根をもつ$a,t$の条件
$(2)g(x)=f(f(x)),g(x)=0$
が相違9実根をもつ$a$の範囲
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1993年 国立大学法人京都大学

$f(x)=x^3-3ax$

$(1)f(x)=t$が相違3実根をもつ$a,t$の条件
$(2)g(x)=f(f(x)),g(x)=0$
が相違9実根をもつ$a$の範囲
投稿日:2018.12.14

<関連動画>

【高校数学】数Ⅲ-55 無理関数とそのグラフ②

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の無理関数のグラフをかけ。

①$y=\sqrt{2-x}$

②$y=-\sqrt{2x-4}$

③$y=-\sqrt{-3x-5}$

図は動画内参照
この動画を見る 

福田のわかった数学〜高校3年生理系017〜関数の極限、無理関数の極限(2)

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 無理関数の極限(2)
$\lim_{x \to 1}\displaystyle \frac{\sqrt[3]x-1}{\sqrt x-1}$ を求めよ。
この動画を見る 

大学入試問題#455「落とすと落ちる問題② 横浜国立大学 後期 (2003) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{16} \displaystyle \frac{dx}{\sqrt{ x }+\sqrt[ 4 ]{ x }}$

出典:2003年横浜国立大学 入試問題
この動画を見る 

【数Ⅲ】【関数】f(x)={0 (-1≦x≦1),|x|-1(x<-1,1<x), g(x)={x²-1(x<0), x-1(0≦x)で(gof)(x),(fog)(x)を求めよ。

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\begin{eqnarray}
f(x)
=
\begin{cases}
0 & ( -1 \leqq x \leqq 1 ) \\
|x|-1 & ( x < -1, 1 < x )
\end{cases}
\end{eqnarray}$

$\begin{eqnarray} g(x)
=
\begin{cases}
x^2-1 & ( x < 0 ) \\
x-1 & ( 0\leqq x )
\end{cases}
\end{eqnarray}$
であるとき、
$(g\circ f)(-3),(f\circ g)(-3),(g\circ f)(x),(f\circ g)(x)$
を求めよ。
この動画を見る 

東京海洋大 漸化式と3次関数

アイキャッチ画像
単元: #数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$a_1=1$であり,$a_{n+1}=27^{n^2-3n-9}a_n$とする.

(1)一般項$a_n$を求めよ.
(2)$a_n$が最小となる値を求めよ.

2013東京海洋大過去問
この動画を見る 
PAGE TOP