答えは0個です。早稲田(商) - 質問解決D.B.(データベース)

答えは0個です。早稲田(商)

問題文全文(内容文):
$2021$以下の正の整数で,すべての約数の和が奇数であるものの個数を求めよ.

2021早稲田(商)
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021$以下の正の整数で,すべての約数の和が奇数であるものの個数を求めよ.

2021早稲田(商)
投稿日:2021.02.27

<関連動画>

整数問題 初級

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数(x,y)の組をすべて求めよ.
$(xy-7)^2=x^2+y^2 $
この動画を見る 

約数4個の数 渋谷教育学園幕張

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nはちょうど4つの約数を持ちそのうち2つは素数である。
これら4つの約数の和が24であるような自然数nをすべて求めよ。

渋谷教育学園幕張高等学校
この動画を見る 

福田の数学〜神戸大学2022年理系第5問〜指数方程式と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ a,bを実数、pを素数とし、1 \lt a \lt bとする。以下の問いに答えよ。\hspace{90pt}\\
\\
(1)x,y,zを0でない実数とする。a^x=b^y=(ab)^zならば\frac{1}{x}+\frac{1}{y}=\frac{1}{z}であることを示せ。\\
\\
(2)m,nをm \gt nを満たす自然数とし、\frac{1}{m}+\frac{1}{n}=\frac{1}{p}とする。m,nの値をpを用いて表せ。\\
\\
(3)m,nを自然数とし、a^m=b^n=(ab)^pとする。bの値をa,pを用いて表せ。
\end{eqnarray}

2022神戸大学理系過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$は素数であり,$n$は自然数とする.これを解け.
$p^2+pq+q^2=n^2$
この動画を見る 

福田の数学〜立教大学2022年理学部第1問(5)〜最大公約数と最小公倍数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\ a \lt b$ を満たす自然数の組a$,\ b$の和が119、最小公倍数が462であるとき、
$a=\boxed{\ \ キ\ \ },\ b=\boxed{\ \ ク\ \ }$である。

2022立教大学理学部過去問
この動画を見る 
PAGE TOP