京都大 図形(基礎)高校数学 Japanese university entrance exam questions Kyoto University - 質問解決D.B.(データベース)

京都大 図形(基礎)高校数学 Japanese university entrance exam questions Kyoto University

問題文全文(内容文):
京都大学過去問題
1辺の長さが1の正四面体OABCのBC上に点PをとりBPの長さをxとする
(1)OAPをxで表せ。
(2)OAPの最小値

*図は動画内参照
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#京都大学#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
1辺の長さが1の正四面体OABCのBC上に点PをとりBPの長さをxとする
(1)OAPをxで表せ。
(2)OAPの最小値

*図は動画内参照
投稿日:2018.05.23

<関連動画>

【数C】ベクトル:正射影ベクトルの仕組みと使い方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
正射影ベクトルについて解説します!
この動画を見る 

【数B】ベクトル:ベクトルの大きさを自由自在に扱おう!

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
アドバンスプラス数学B
問題617
$\vec{a}=(2,-1)$について、
(1)$\vec{a}$と平行な単位ベクトルを求めよ。
(2)$\vec{a}$と同じ向きで、大きさが5である$\vec{b}$を求めよ。
この動画を見る 

【高校数学】 数B-45 位置ベクトルと図形①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$A(\overrightarrow{a}),B(\overrightarrow{b}),C(\overrightarrow{c}),D(\overrightarrow{d})$を頂点とする四面体の辺$BC$を$3:1$に内分する点を
$P,DP$を$4:3$に外分する点を$Q$,線分$AQ$の中点を$R$とする.
点$P$,点$Q$,点$R$の位置ベクトルを,$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c},\overrightarrow{d}$で表そう.

②四面体$OABC$がある.線分$AB$を$2:3$に内分する点を$P$,
線分$OP$を$10:1$に外分する点を$Q$,線分$CQ$を$3:1$に内分する点を$R$とする.
$\triangle ARB$の重心を$G$とするとき,
$\overrightarrow{OG}$を$\overrightarrow{OA}=\large{\overrightarrow{a}}=\overrightarrow{OB}=\large{\overrightarrow{b}},\overrightarrow{OC},\large{\overrightarrow{c}}$で表そう.
この動画を見る 

福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、
すべての辺の長さは1であり、$\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }$のどの
2つのなす角も$\frac{\pi}{3}$であるとする。
(1)$\overrightarrow{ OF }$を$\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }$を用いて表すと、
$\overrightarrow{ OF }= \boxed{き}$である。
(2)$|\overrightarrow{ OF }|,\ \cos \angle AOF$を求めると$|\overrightarrow{ OF }|= \boxed{く},$
$\ \cos \angle AOF=\boxed{け}$である。
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して
できる円錐の体積は$\boxed{こ}$である。
(4)対角線OF上に点Pをとり、$|\overrightarrow{ OP }|=t$とおく。点Pを通り、$\overrightarrow{ OF }$に垂直な平面
をHとする。平行六面体$OABC-DEFG$を平面Hで切った時の断面が六角形
となるようなtの範囲は$\boxed{さ}$である。このとき、平面Hと辺AEの交点をQ
として、$|\overrightarrow{ AQ }|$をtの式で表すと$|\overrightarrow{ AQ }|=\boxed{し}$である。
また、$|\overrightarrow{ PQ }|^2$を$t$の式で表すと
$|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{す}$
である。
(5)平行六面体$OABC-DEFG$を、直線OFの周りに1回転してできる回転体
の体積は$\boxed{こ}$である。

2022明治大学理工学部過去問
この動画を見る 

福田の数学〜京都大学2025文系第5問〜平面が定点を通ることの証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#平面上のベクトル#恒等式・等式・不等式の証明#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

座標空間の$4$点$O,A,B,C$同一平面上にないとする。

$s,t,u$は$0$でない実数とする。

直線$OA$上の点$L$、直線$OB$の点$M$、直線$OC$上の点$N$を

$\overrightarrow{ OL }=s\overrightarrow{ OA},\quad \overrightarrow{ OM }=t\overrightarrow{ OB},\quad \overrightarrow{ ON }=u\overrightarrow{ OC }$

が成り立つようにとる。

$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で

あらゆる値をとるとき、

$3$点$L,M,N$の定める平面$LMN$は、

$s,t,u$の値に無関係な一定の点を通ることを示せ。

$2025$年京都大学文系過去問題
この動画を見る 
PAGE TOP