福井(医) 複雑な漸化式 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

福井(医) 複雑な漸化式 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
福井大学過去問題
$a_1=1 \quad a_2=3$
$(n \geqq 2)$
$a_{n+1}-\frac{4n+2}{n+1}a_n+\frac{4n-4}{n}a_{n-1}=0$
(1)$b_n=a_{n+1}-\frac{2n}{n+1}a_n \quad (n \geqq 1)$
$b_n$をnで表せ。
(2)一般項$a_n$を求めよ。
投稿日:2018.09.08

<関連動画>

新潟大 漸化式 証明

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数
$a_{n}=\sqrt{ n^2+1 }-n$

(1)
$\displaystyle \frac{1}{2n+1} \lt a_{n} \lt \displaystyle \frac{1}{2n}$を示せ

(2)
$a_{n} \gt a_{n+1}$を示せ

(3)
$a_{n} \lt 0.03$となる最小の自然数$n$

出典:2013年新潟大学 過去問
この動画を見る 

【数B】数列:和の記号∑、シグマの展開! 次の和S[n]を求めよ。S[n]=1/(1+√3)+1/(√3+√5)+1/(√5+√7)+...+1/(√(2n-1)+√(2n+1))

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【数B】次の和$S_n$を求めよ。
$S_n=\dfrac{1}{1+\sqrt3}+\dfrac{1}{\sqrt3+\sqrt5}+\dfrac{1}{\sqrt5+\sqrt7}+...+\dfrac{1}{\sqrt{2n-1}+\sqrt{2n+1}}$
この動画を見る 

岩手大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n=1,2,3・・・・$
$a_1=31$
$a_{n+1}=\dfrac{(n+3)a_n-28}{n+2}$
一般項を求めよ.

2020岩手大過去問
この動画を見る 

福田の一夜漬け数学〜確率漸化式(1)〜京都大学の問題(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B,C$の3人が色のついた札を1枚ずつ持っている。初めに$A,B,C$
の持っている札の色はそれぞれ赤、白、青である。$A$がサイコロを
投げて、3の倍数の目が出たら$A$は$B$と持っている札を交換し、
その他の目が出たら$A$は$C$と札を交換する。この試行を$n$回繰り返し
た後に赤い札を$A,B,C$が持っている確率をそれぞれ$a_n,b_n,c_n$とする。

(1)$n \geqq 2$のとき、$a_n,b_n,c_n$を$a_{n-1},b_{n-1},b_{n-1}$で表せ。
(2)$a_n$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る 
PAGE TOP