連立方程式:豊島岡女子学園高等学校~全国入試問題解法【神授業】 - 質問解決D.B.(データベース)

連立方程式:豊島岡女子学園高等学校~全国入試問題解法【神授業】

問題文全文(内容文):
入試問題 豊島岡女子学園高等学校

ある中学校の合唱部の2017年の部員数は、女子が$x$ 人、男子が64人でした。2018年の部員数は、2017 年と比べて女子が$y$%減り、男子が$y$%増えました。 2019年の部員数は、2018年と比べて女子が40%増 え、男子が$y$%減りました。

2019年の部員数が、女子が63人、男子が60人のとき
$x$の値を求めなさい。
(ただし、$ y\gt 0$)
単元: #数学(中学生)#中1数学#中2数学#方程式#連立方程式#高校入試過去問(数学)#豊島岡女子高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 豊島岡女子学園高等学校

ある中学校の合唱部の2017年の部員数は、女子が$x$ 人、男子が64人でした。2018年の部員数は、2017 年と比べて女子が$y$%減り、男子が$y$%増えました。 2019年の部員数は、2018年と比べて女子が40%増 え、男子が$y$%減りました。

2019年の部員数が、女子が63人、男子が60人のとき
$x$の値を求めなさい。
(ただし、$ y\gt 0$)
投稿日:2021.03.21

<関連動画>

【中1 数学】中1-7 正負のかけ算・わり算②

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋め、計算せよ。
ポ乗法と除法だけなら、①___の数を
かぞえると答えの符号が分かるんだ!!

①が偶数個→答えは②____
①が奇数個→答えは③____
◎逆数はいくつ?
④$\displaystyle \frac{2}{5}$→
⑤$\displaystyle \frac{1}{3}$→
⑥$-5$→

◎計算しよう!
⑦$(-\displaystyle \frac{2}{9} \times (-\displaystyle \frac{3}{5})=$
⑧$\displaystyle \frac{4}{15} \div (-\displaystyle \frac{2}{5})=$
⑨$(-36) \times 5 \div (-4)=$
⑩$(-\displaystyle \frac{7}{4}) \div 14 \times \displaystyle \frac{6}{5}=$
⑪$(-\displaystyle \frac{2}{3}) \div (-\displaystyle \frac{8}{5}) \div(-20)=$
⑫$(-4) \times (-5) \div (-10) \times (-3)=$
⑬$0.3 \div (-\displaystyle \frac{7}{3}) \times 21=$

【おまけ】
もし$(-1)$を$777$個かけると答えは⑭____になる。
この動画を見る 

【中学数学】比の方程式をどこよりも丁寧に 3-4【中1数学】

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a:b=c:d ⇒ ad=bc がなぜ成り立つのか?
疑問に思った人は是非見てください!
この動画を見る 

【これぞ、数学の「応用」…!】文章題:埼玉県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
アイスクリームをS,M,Lの3種類のサイズで販売している.
最も割安なサイズを求めなさい.

埼玉県高校過去問
この動画を見る 

西暦"2023"を含む入試予想問題(その3)~全国入試問題解法

アイキャッチ画像
単元: #計算と数の性質#数の性質その他#数学(中学生)#中1数学
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$20^{23}$は何桁の数ですか.
なお,$2^{10}=1024$です.


この動画を見る 

図形:岡山県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#円#平面図形#高校入試過去問(数学)#岡山県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 岡山県の高校

図のように、 円$O$の円周上に$3$点$A, B, C$。
四角形$OABC$について、 対角線の交点$P$。
$\angle AOB=70°$,$\angle OBC=65°$のとき、
$\angle APB$の大きさを求めなさい。
※図は動画内参照
この動画を見る 
PAGE TOP