福田の数学〜早稲田大学2024年人間科学部第1問(1)〜4次式の最小値 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2024年人間科学部第1問(1)〜4次式の最小値

問題文全文(内容文):
$\Large\boxed{1}$ (1)$x$が実数であるとき、$x(x+1)(x+2)(x+3)$ の最小値は$\boxed{\ \ ア\ \ }$である。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)$x$が実数であるとき、$x(x+1)(x+2)(x+3)$ の最小値は$\boxed{\ \ ア\ \ }$である。
投稿日:2024.04.30

<関連動画>

座標平面上の平行四辺形 令和4年度 2022 入試問題100題解説97問目! 愛知県

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#平面上の曲線#図形と計量#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDが平行四辺形のとき点Dのx座標は?
*図は動画内参照

2022愛知県
この動画を見る 

福田の1.5倍速演習〜合格する重要問題089〜東京工業大学2018年度理系第2問〜3変数の不定方程式の整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 次の問いに答えよ。
(1)35x+91y+65z=3 を満たす整数の組(x,y,z)を一組求めよ。
(2)35x+91y+65z=3 を満たす整数の組(x,y,z)の中で$x^2+y^2$の値が最小となるもの、およびその最小値を求めよ。

2018東京工業大学理系過去問
この動画を見る 

東京理科大 三次方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$と実数解を求めよ。
$a,b,c$は整数

$x^3+ax^2+bx+c=0$の1つの解が
$\displaystyle \frac{-\sqrt[ 3 ]{ 2 }-2+\sqrt[ 3 ]{ 2 }\sqrt{ 3 }i}{2}$

出典:東京理科大学 過去問
この動画を見る 

福田の数学〜互除法の操作回数を最大にするには〜慶應義塾大学2023年環境情報学部第1問(1)〜ユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{ 1 }}$(1)正の整数$\textit{m}$と$\textit{n}$の最大公約数を効率よく求めるには、$\textit{m}$を$\textit{n}$で割った時の余りを$\textit{r}$としたとき、$\textit{m}$と$\textit{n}$の最大公約数と$\textit{n}$と$\textit{r}$の最大公約数が等しいことを用いるとよい。たとえば、455と208の場合、次のように余りを求める計算を3回行うことで最大公約数13を求めることができる。

455÷208=2・・・39
208÷39=5・・・13
39÷13=3・・・0

このように余りを求める計算をして最大公約数を求める方法をユークリッドの互除法という。20711と15151の最大公約数は${\boxed{ア}}$である。
100以下の正の整数$m$と$n$(ただし$m \gt n$とする)の最大公約数を
ユークリッドの互除法を用いて求めるとき、
余りを求める計算の回数が最も多く必要になるのは
$m={\boxed{イ}},n={\boxed{ウ}}$のときである。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

大学入試問題#892「数学はやっぱ根性」 #京都工芸繊維大学(2023)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$0 \leq \theta \leq \displaystyle \frac{\pi}{4}$とする
$f(\theta)=\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{|\sin\theta-\sin x|}{\cos^2x} dx$

出典:2023年京都工芸繊維大学
この動画を見る 
PAGE TOP