問題文全文(内容文):
関数$f_1(x),f_2(x),f_3(x),…$を次の関係式で定める。
$f_1(x)=3x$
$f_{n+1}(x)=(n+2)x^{n+1}+(\displaystyle \int_{0}^{1} f_n(t) dt)x$
関数$f_n(x)$を$x$と$n$の式で表せ。$(n=1,2,3,…)$
出典:2024年北海道大学
関数$f_1(x),f_2(x),f_3(x),…$を次の関係式で定める。
$f_1(x)=3x$
$f_{n+1}(x)=(n+2)x^{n+1}+(\displaystyle \int_{0}^{1} f_n(t) dt)x$
関数$f_n(x)$を$x$と$n$の式で表せ。$(n=1,2,3,…)$
出典:2024年北海道大学
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師:
ますただ
問題文全文(内容文):
関数$f_1(x),f_2(x),f_3(x),…$を次の関係式で定める。
$f_1(x)=3x$
$f_{n+1}(x)=(n+2)x^{n+1}+(\displaystyle \int_{0}^{1} f_n(t) dt)x$
関数$f_n(x)$を$x$と$n$の式で表せ。$(n=1,2,3,…)$
出典:2024年北海道大学
関数$f_1(x),f_2(x),f_3(x),…$を次の関係式で定める。
$f_1(x)=3x$
$f_{n+1}(x)=(n+2)x^{n+1}+(\displaystyle \int_{0}^{1} f_n(t) dt)x$
関数$f_n(x)$を$x$と$n$の式で表せ。$(n=1,2,3,…)$
出典:2024年北海道大学
投稿日:2024.08.06