数学「大学入試良問集」【8−3 2直線のなす角】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【8−3 2直線のなす角】を宇宙一わかりやすく

問題文全文(内容文):
$x$を正の実数とする。
座標平面上の3点$A(0,1),B(0,2),P(x,x)$をとり、$\triangle ABC$を考える。
$x$の値が変化するとき、$\angle APB$の最大値を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x$を正の実数とする。
座標平面上の3点$A(0,1),B(0,2),P(x,x)$をとり、$\triangle ABC$を考える。
$x$の値が変化するとき、$\angle APB$の最大値を求めよ。
投稿日:2021.05.10

<関連動画>

数学「大学入試良問集」【8−1 三角関数の最大・最小】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$0 \leqq x \leqq 2\pi$のとき、関数
$y=\sin^2x+\sqrt{ 3 }\ \sin\ x\ \cos\ x-2\cos^2x$の最大値と最小値、および、そのときの$x$の値を求めよ。

(2)
点$(x,y)$が原点を中心とする半径1の円周上を動くとき、$xy(x+y-1)$の最大値と最小値を求めよ。
この動画を見る 

19神奈川県教員採用試験(数学:5番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣
tanα=2,tanβ=4,tan(α+β+γ)=1のときtanγを求めよ。
この動画を見る 

北海道大 式の最大値 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
北海道大学過去問題
x,y実数
$x^2+y^2=1$を満たす
$\sqrt3x^2+2xy-\sqrt3y^2$の最大値と、そのときのx,yの値
この動画を見る 

【数学】4分で積和公式が馬鹿でもわかる考え方

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】4分で積和公式解説動画です
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第2問〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}\ 0 \leqq \theta \leqq \pi $のとき、関数$y=\sin3\theta-3\cos(\theta-\frac{\pi}{6})$の最大値と最小値を求めたい。
(1)$x=\cos(\theta-\frac{\pi}{6})$とおくと、もとの関数は

$y=\boxed{\ \ アイ\ \ }\ x^3+\boxed{\ \ ウエ\ \ }\ x^2+\boxed{\ \ オカ\ \ }\ x+\boxed{\ \ キク\ \ }$
と書き直すことができる。
(2)このことから、もとの関数の最大値は$\theta=\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ \pi$のときに
$\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}$
であり、最小値は$\theta=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ \pi$のときに
$\boxed{\ \ ナニ\ \ }\sqrt{\boxed{\ \ ヌネ\ \ }}$であることがわかる。

2022慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP