重積分②(高専数学 微積II,数学検定1級解析) - 質問解決D.B.(データベース)

重積分②(高専数学 微積II,数学検定1級解析)

問題文全文(内容文):
重積分(累次積分)
ex1
$∬_0 \frac{y}{x}dx dy$
$D : 1 \leqq x \leqq 3$ , $x \leqq y \leqq 2x$
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
重積分(累次積分)
ex1
$∬_0 \frac{y}{x}dx dy$
$D : 1 \leqq x \leqq 3$ , $x \leqq y \leqq 2x$
投稿日:2020.10.26

<関連動画>

重積分⑨-5【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.
$\iint_D \ \dfrac{1}{\sqrt{x^2+y^2}}\ dx \ dy$
$D:0\leqq x\leqq y\leqq 1$
この動画を見る 

重積分⑫-2【図形Dの重心】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
図形Dの重心Gは
$G\begin{pmatrix}
∬_Dxdxdy & ∬_Dydxdy \\
∬_Ddxdy & ∬_Ddxdy
\end{pmatrix}$
(1)$y^2=4x,x=1$
で囲まれた図形Dの重心Gを求めよ。
(2)$\sqrt x+\sqrt y =1$,x軸、y軸で囲まれた図形Dの重心Gを求めよ。
この動画を見る 

数検1級1次過去問 #微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定1級
指導講師: ますただ
問題文全文(内容文):
$y(0)=1,\ y'(0)=5$
$y''-6y'+9y=6e^{3x}$を満たす微分方程式の解を求めよ。

出典:数字検定1級1次
この動画を見る 

20年5月数学検定1級1次試験(微分)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$x=\sin\theta$
$y=-1\log\tan\dfrac{\theta}{2}-\cos\theta$
$\theta=\dfrac{\pi}{3}$における$\dfrac{d^2y}{dx^2}$を求めよ.

20年5月数学検定1級1次試験(微分)過去問
この動画を見る 

微分方程式⑪-1【非線形2階微分方程式】(高専数学、数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

(1)$\dfrac{dy}{dx^2}+\left(\dfrac{dy}{dx}\right)^2=0$
(2)$\dfrac{d^2y}{dx^2}=\sqrt{1-\left(\dfrac{dt}{dx}\right)^2}$
この動画を見る 
PAGE TOP