福田の数学〜青山学院大学2023年理工学部第2問〜反復試行の確率 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2023年理工学部第2問〜反復試行の確率

問題文全文(内容文):
$\Large\boxed{2}$ 白石と黒石を手元にたくさん用意する。表が白色、裏が黒色の硬貨1枚を用いて、机の上で以下の操作を繰り返し行う。ただし、最初の操作は机の上に石が1個もない状態から始めるものとする。
操作:効果を投げ、出た色と異なる色の石が机の上にあればその中の1個を取り除き、なければ出た色と同じ色の石を手元から机の上に1個置く。
とくに、机の上に石が1個もなければ、次の回の操作では出た色と同じ色の石を手元から机の上に1個置く。
(1)3回目の操作後に机の上に石がちょうど3個ある確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(2)6回目の操作後に机の上に石がちょうど2個ある確率は$\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$であり、石が1個もない確率は$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ クケ\ \ }}$である。
(3)6回目の操作後に机の上にある石が2個以下であったときに、8回目の操作後に机の上にある石も2個以下である条件付き確率は$\frac{\boxed{\ \ コサ\ \ }}{\boxed{\ \ シス\ \ }}$である。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 白石と黒石を手元にたくさん用意する。表が白色、裏が黒色の硬貨1枚を用いて、机の上で以下の操作を繰り返し行う。ただし、最初の操作は机の上に石が1個もない状態から始めるものとする。
操作:効果を投げ、出た色と異なる色の石が机の上にあればその中の1個を取り除き、なければ出た色と同じ色の石を手元から机の上に1個置く。
とくに、机の上に石が1個もなければ、次の回の操作では出た色と同じ色の石を手元から机の上に1個置く。
(1)3回目の操作後に机の上に石がちょうど3個ある確率は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(2)6回目の操作後に机の上に石がちょうど2個ある確率は$\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オカ\ \ }}$であり、石が1個もない確率は$\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ クケ\ \ }}$である。
(3)6回目の操作後に机の上にある石が2個以下であったときに、8回目の操作後に机の上にある石も2個以下である条件付き確率は$\frac{\boxed{\ \ コサ\ \ }}{\boxed{\ \ シス\ \ }}$である。
投稿日:2023.09.03

<関連動画>

福田の数学〜立教大学2021年経済学部第1問(3)〜さいころの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)3個のさいころを1回投げるとき、出た目の最大値が3となる確率は
$\boxed{エ}$であり、また、出た目の積が8となる確率は$\boxed{オ}$である。

2021立教大学経済学部過去問
この動画を見る 

2個のサイコロだけど難問!! 日大三 (西東京)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つのさいころA,Bを同時に投げ、Aの目の数をa、Bの目の数をbとする。
$2a^2-3ab+b^2$が正の奇数となる確率を求めよ。
日本大学第三高等学校
この動画を見る 

【高校数学】  数A-5  場合の数② ・ 正の約数編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①48の正の約数は何個?
②48の正の約数の総和はいくつ?
③600の正の約数は何個?
④600の正の約数の総和はいくつ?
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第1問〜条件付き確率と大小比較

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
ある国の国民がある病気に罹患している確率を$p$とする。
その病気の検査において、罹患者が陽性と判定される確率を$q$,
非罹患者が陽性と判定される確率を$r$とする。ただし$0 \lt p \lt 1,\ 0 \lt r \lt q$である。
さらに、検査で陽性と判定された人が罹患している確率を$s$とする。次の問いに答えよ。
(1)$s$を$p,\ q,\ r$を用いて表せ。
(2)$k$回すべて陽性と判定されれば最終的に陽性と判断される場合、最終的に陽性
と判断された人が罹患している確率を$a_k$とする。$a_k$を$p,q,r,k$を用いて表せ。
(3)$k$回のうち1回でも陽性と判定されれば最終的に陽性と判断される場合、
最終的に陽性と判断された人が罹患している確率を$b_k$とする。$b_k$を$p,q,r,k$を用いて表せ。
(4)$s,\ a_2,\ b_2$の大小関係を示せ。

2022早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師: 福田次郎
問題文全文(内容文):
整数$\ a_1,\ a_2,\ a_3,\ \ldots$を、さいころをくり返し投げることにより、以下のように
定めていく。まず$a_1=1$とする。そして、正の整数$n$に対し、$a_{n+1}$の値を、n回目に
出たさいころの目に応じて、次の規則で定める。
$(\ 規則\ )$ n回目に出た目が1,2,3,4なら$a_{n+1}=a_n、5,6$なら$a_{n+1}=-a_n$
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、
$a_1=1,a_2=-1,a_3=-1,a_4=1$となる。
$a_n=1$となる確率を$p_n$とする。ただし、$p_1=1$とし、さいころのどの目も、
出る確率は$\frac{1}{6}$であるとする。
(1)$p_2,p_3$を求めよ。
(2)$p_{n+1}$を$p_n$を用いて表せ。
(3)$p_n \leqq 0.5000005$を満たす最小の正の整数nを求めよ。
ただし、$0.47 \lt \log_{10}3 \lt 0.48$であることを用いてよい。

2022筑波大学理系過去問
この動画を見る 
PAGE TOP