福田の数学〜上智大学2023年理工学部第1問(1)〜複素数平面と確率 - 質問解決D.B.(データベース)

福田の数学〜上智大学2023年理工学部第1問(1)〜複素数平面と確率

問題文全文(内容文):
$\Large{\boxed{1}}$ (1)次の6つの複素数が1つずつ書かれた6枚のカードがある。
$\frac{1}{2}$, 1, 2, $\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$, $\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}$, $\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$
これらから無作為に3枚選び、カードに書かれた3つの複素数を掛けた値に対応する複素数平面上の点をPとする。
(i)点Pが虚軸上にある確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(ii)点Pの原点からの距離が1である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)次の6つの複素数が1つずつ書かれた6枚のカードがある。
$\frac{1}{2}$, 1, 2, $\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$, $\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}$, $\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$
これらから無作為に3枚選び、カードに書かれた3つの複素数を掛けた値に対応する複素数平面上の点をPとする。
(i)点Pが虚軸上にある確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(ii)点Pの原点からの距離が1である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
投稿日:2023.09.21

<関連動画>

【数学A/中間テスト対策】順列の応用『辞書式配列』

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a,b,c,d,e$を1つずつ使ってできる文字列を$abcde$から$edcba$まで辞書式に並べるとき、$cbdea$は何番目にあるか求めよ。
この動画を見る 

山梨大 順列の証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019年 山梨大学 過去問

赤玉$p$個,青玉$q$個,白玉$r$個
合計$n$個を1列に並べてできる順列の総数が
$\frac{n!}{p!f!r!}$であることを証明せよ。
この動画を見る 

【高校数学】重複順列の例題を一緒に解こう~これだけはできて~ 1-9.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
(1) 5題の問題に○、×で答えるとき、○×のつけ方は何通りあるか。

(2) 3個の数字0,1,2を重複を許して用いてできる5桁の整数は何個か。

(3) A,B 2つの箱に異なる10個の玉を入れる方法は何通りあるか。
  箱の中に少なくとも1個の玉は入れるものとする。

-----------------

2⃣
(1) 8人を2つの部屋A,Bに入れる方法は何通りあるか。
  ただし、1人も入らない部屋があってもよいものとする。

(2) 8人を2つのグループA, Bに分ける方法は何通りあるか。

(3) 8人を2つのグループに分ける方法は何通りあるか。
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

点$P, Q$を数直線の原点におき、
$1$個のさいころを投げて
出た目に応じて$P, Q$を動かす。
偶数の目が出たときは$P$を正の向きに$1$だけ動かし、
$5$または$6$の目が出たときは
$Q$を正の向きに$1$だけ動かす。
たとえば、$6$の目が出たときは$P, Q$をともに
正の向きに$1$だけ動かす。
$P$と$Q$の距離が初めて$2$となるまで
さいころを投げ続けることとし、
$P$と$Q$の距離が$2$となったら、
それ以降はさいころを投げない。
$n$回さいころを投げて$P$と$Q$の距離が
$2$となる確率を$p_n$とする。

(1)$P_2 = \boxed{シ}$である。

(2)$n$回さいころを投げて、
$P$が$Q$よりも正の向きに
$1$だけ進んでいる確率を$x_n$、
$P$と$Q$が同じ位置にある確率を$y_n$、
$Q$が$P$よりも正の向きに$1$だけ進んでいる確率を
$z_n$とすると、

$y_{n+1}=\boxed{ス}x_n+\boxed{セ}y_n+\boxed{ソ}z_n$

という関係式が成立する。

また、$x_n=\boxed{タ}z_n$が成り立つ。

ただし、$\boxed{ス}$~$\boxed{タ}$には数を記入すること。

(3)関係式

$z_{n+1}+\alpha y_{n+1}=\beta(z_n+\alpha y_n)$

を満たす定数の組$(\alpha,\beta)$は$\boxed{チ}$と$\boxed{ツ}$の$2$組ある。

(4)$p_n$を$n$を用いて表すと$p_n=\boxed{テ}$となる。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

【演習で復習・解説!】条件付き確率を5分で復習!〔数学 高校数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
大小のサイコロを1個ずつ投げた。このとき以下の2つの事象を定義する。
A: 大きいサイコロの目が4
B: サイコロの目の和が9
以下の問に答えよ。
(1)事象Aが起こる確率と事象Bが起こる確率をそれぞれ求めよ。
(2)事象Bが起こった時の事象Aが起こる条件付き確率を求めよ。
この動画を見る 
PAGE TOP