福田の数学〜上智大学2023年理工学部第1問(1)〜複素数平面と確率 - 質問解決D.B.(データベース)

福田の数学〜上智大学2023年理工学部第1問(1)〜複素数平面と確率

問題文全文(内容文):
$\Large{\boxed{1}}$ (1)次の6つの複素数が1つずつ書かれた6枚のカードがある。
$\frac{1}{2}$, 1, 2, $\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$, $\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}$, $\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$
これらから無作為に3枚選び、カードに書かれた3つの複素数を掛けた値に対応する複素数平面上の点をPとする。
(i)点Pが虚軸上にある確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(ii)点Pの原点からの距離が1である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)次の6つの複素数が1つずつ書かれた6枚のカードがある。
$\frac{1}{2}$, 1, 2, $\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$, $\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}$, $\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$
これらから無作為に3枚選び、カードに書かれた3つの複素数を掛けた値に対応する複素数平面上の点をPとする。
(i)点Pが虚軸上にある確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(ii)点Pの原点からの距離が1である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
投稿日:2023.09.21

<関連動画>

【高校数学】確率の基本性質~排反~ 2-2 【数学A】

アイキャッチ画像
単元: #数A#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
確率の基本性質 排反の説明動画です
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第4問〜円順列と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
アルファベットのAと書かれた玉が1個、Dと書かれた玉が1個、Hと書かれ
た玉が1個、Iと書かれた玉が1個、Kと書かれた玉が2個、Oと書かれた玉が
2個ある。これら8個の玉を円形に並べる。
(1) 時計回りにHOKKAIDOと並ぶ確率を求めよ。
(2) 隣り合う子音が存在する確率を求めよ。ここで子音とは、D, H, K の3文字
(玉は4個)のことである。
(3) 隣り合う子音が存在するとき、それがKKだけである条件つき確率を求めよ。

2022北海道大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2024年人間科学部第2問〜反復試行と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を2以上の自然数とする。1から$n$までの番号が1つずつつけられた$n$個の玉が中身の見えない袋に入っている。袋の中から1個の玉を選んで番号を確認して袋に戻すという操作を$n$回繰り返す。この$n$回の操作の中で、1から$n$-1までのいずれの番号の玉も選ばれているとき、番号が$n$の玉も選ばれている条件付き確率を$P(n)$とするとき、$P(3)$=$\frac{\boxed{オ}}{\boxed{カ}}$, $P(50)$=$\frac{\boxed{キ}}{\boxed{ク}}$ である。
この動画を見る 

東大 場合の数 高校数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#場合の数#場合の数#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボ ールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ 相異なる入れ方の総数を求めたい。

(1) 1からnまで異なる番号のついたこのボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(2)互いに区別のつかないn個のボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つ の箱に入れる場合、その入れ方は全部で何通りあるか。
この動画を見る 

気付けば一瞬の確率 愛工大名電(愛知)

アイキャッチ画像
単元: #数学(中学生)#数A#場合の数と確率#確率#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,Bの2人が、5種類のメニューの中からそれぞれ好きな料理を1つ選んで注文する。
2人の選んだ料理が異なる確率は?
愛知工業大学名電高等学校
この動画を見る 
PAGE TOP