福田のおもしろ数学384〜整数部分と小数部分を含む連立方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学384〜整数部分と小数部分を含む連立方程式

問題文全文(内容文):
[a]はaの整数部分、{a}はaの小数部分
連立方程式
x+[y]+{z}=2025.1… ①
[x]+{y}+z=2025.2… ②
{x}+y+[z]=2025.3… ③

を解いて下さい。
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[a]はaの整数部分、{a}はaの小数部分
連立方程式
x+[y]+{z}=2025.1… ①
[x]+{y}+z=2025.2… ②
{x}+y+[z]=2025.3… ③

を解いて下さい。
投稿日:2025.01.20

<関連動画>

福田の数学〜早稲田大学2025人間科学部第2問〜絶対値の付いた関数の最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$a\lt b \lt c$を満たす実数の定数に対して、

すべての実数を定義域とする$x$の関数

$f(x)=\vert x-a \vert + \vert x-b \vert + \vert x-c \vert $を定める。

このとき、$5x+4f(x)$の最小値は

$\boxed{ク}a + \boxed{ケ}b + \boxed{コ}c$である。

また、$f(x)$の最小値が$20$で、

$f(c)=28$かつ$f(10)=31$を満たす$a$の値は

$\boxed{サ}$と$\boxed{シ}$である。

ただし、$\boxed{サ} \lt \boxed{シ}$とする。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

2023高校入試解説26問目 √の計算 早稲田本庄最初の一問

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\{ \frac{\sqrt2 + \sqrt3 -\sqrt5}{\sqrt{18}(\sqrt2 -1)} \}^2 \div
\{ \frac{\sqrt2(\sqrt8 + 2 )}{\sqrt{2}+ \sqrt3 + \sqrt5)} \}^2$

2023早稲田大学 本庄高等学院
この動画を見る 

合同式 二項展開 因数分解の基本

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$11^{45}+13^{45}$を$144$で割った余りを求めよ.
この動画を見る 

失敗しないたすきがけ因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
たすきがけ因数分解に関して解説していきます.
この動画を見る 

【数Ⅰ】【図形と計量】空間の基本1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のような$\rm AB=\sqrt6,AD=\sqrt3,AE=1$である直方体$\rm ABCD-EFGH$がある。このとき、次のものを求めよ。
(1)$\rm\angle ACF$の大きさ 
(2)$\rm \triangle ACF$の面積
この動画を見る 
PAGE TOP