整数問題(類・東工大) - 質問解決D.B.(データベース)

整数問題(類・東工大)

問題文全文(内容文):
nを自然数とする.
$a_n=19^n+(-1)^{n-1}・3^{6n-5}$
すべての$a_n$を割り切る素数をすべて求めよ.

東工大(類)過去問
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$a_n=19^n+(-1)^{n-1}・3^{6n-5}$
すべての$a_n$を割り切る素数をすべて求めよ.

東工大(類)過去問
投稿日:2022.11.09

<関連動画>

おうぎ形と長方形

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a+b=10
長方形の面積=?
*図は動画内参照
この動画を見る 

【初めの一手は…!】二次方程式:中央大学杉並高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#高校入試過去問(数学)#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$4(x - 7)(x - 16)+56 = (x-8)(x-9)$を解きなさい
この動画を見る 

【数A】【数と式】(1)(x²+xy+y²)(x²-xy+y²)(x⁴+x²y²+y⁴)(2) (x+y+1)(x+y-1)(x-y+1)(x-y-1)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を展開しなさい
(1). (x²+xy+y²)(x²-xy+y²)(x⁴+x²y²+y⁴)
(2). (x+y+1)(x+y-1)(x-y+1)(x-y-1)
この動画を見る 

どっちが大きい?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{2023} - \sqrt{2022}$ VS $\sqrt{2022} - \sqrt{2021}$
どっちが大きい?
この動画を見る 

福田の数学〜東京工業大学2022年理系第1問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #大学入試過去問(数学)#2次関数#複素数平面#2次方程式と2次不等式#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、$f(z)=z^2+az+b$ とする。a,bが
$|a| \leqq 1,  |b| \leqq 1$
を満たしながら動くとき、$f(z)=0$を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
この動画を見る 
PAGE TOP