整数問題(類・東工大) - 質問解決D.B.(データベース)

整数問題(類・東工大)

問題文全文(内容文):
nを自然数とする.
$a_n=19^n+(-1)^{n-1}・3^{6n-5}$
すべての$a_n$を割り切る素数をすべて求めよ.

東工大(類)過去問
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$a_n=19^n+(-1)^{n-1}・3^{6n-5}$
すべての$a_n$を割り切る素数をすべて求めよ.

東工大(類)過去問
投稿日:2022.11.09

<関連動画>

サクサク解こう

アイキャッチ画像
単元: #平方根#数と式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x \geqq 0,y \geqq 0$とする.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x\sqrt x+y\sqrt y=19 \\
x\sqrt y+y\sqrt x=15
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

部分分数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} +\frac{1}{20}$
この動画を見る 

他の問題もあり!

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x.y.zを整数とする。
次の条件を満たす整数の組(x,y,z)は全部で何組か?
(1)$1 \leqq x \leqq 5$ , $1 \leqq y \leqq 5$ , $1 \leqq z \leqq 5$
(2)$1 \leqq x \lt y \lt z \leqq 5$
(3)$x+y+z = 5$ $ \quad x \geqq 1 ,y \geqq 1,z \geqq 1$
(4)$x+y+z = 5$ $ \quad x \geqq 0 ,y \geqq 0,z \geqq 0$
(5)$1 \leqq x \leqq y \leqq z \leqq 5$

大阪経済大学
この動画を見る 

福田の数学〜上智大学2021年理工学部第2問(1)〜条件を満たす関数と命題の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)実数全体で定義され、実数の値をとる関数f(x)に対する次の条件\ p\ を考える。\\
p:「K以上の全ての実数xに対してf(x) \geqq 1」が成り立つような実数Kが存在する。\\
(\textrm{i})\ 次に挙げた関数(\textrm{a})~(\textrm{d})のそれぞれについて、pを満たすならばo、pを\\
満たさないならばxをマークせよ。\\
(\textrm{a})f(x)=xe^{-x}  (\textrm{b})f(x)=\frac{2x^2+1}{x^2+1} (\textrm{c})f(x)=x+\sin x (\textrm{d})f(x)=x\sin x\\
(\textrm{ii})次の条件がpの否定になるように、\boxed{\ \ あ\ \ }~\boxed{\ \ え\ \ }のそれぞれの選択肢から、\\
あてはまるものを選べ。\\
・「\boxed{\ \ あ\ \ }\ \boxed{\ \ い\ \ }実数に対して\boxed{\ \ う\ \ }」が\boxed{\ \ え\ \ }\\
\\
\boxed{\ \ あ\ \ }の選択肢:(\textrm{a})K以上の  (\textrm{b})K未満の  \\
\boxed{\ \ い\ \ }の選択肢:(\textrm{a})すべての  (\textrm{b})ある  \\
\boxed{\ \ う\ \ }の選択肢:(\textrm{a})f(x) \geqq 1  (\textrm{b})f(x) \lt 1  \\
\boxed{\ \ え\ \ }の選択肢:(\textrm{a})どんな実数Kについても成り立つ  \\(\textrm{b})成り立つような実数Kが存在する  \\
(\textrm{iii})関数f(x)に対して、g(x)=2f(x)で関数g(x)を定める。次に挙げた命題(\textrm{A})~(\textrm{D})\\
のそれぞれについて、正しければoを、正しくなければxを、マークせよ。\\
(\textrm{A})f(x)がpを満たすならば、g(x)もpを満たす。\\
(\textrm{B})g(x)がpを満たすならば、f(x)もpを満たす。\\
(\textrm{C})f(x)がpを満たさないならば、g(x)もpを満たさない。\\
(\textrm{D})f(x)がpを満たさないならば、g(x)もpを満たす。\\
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

【数Ⅰ】【2次関数】2次関数の対称移動2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある放物線を、x軸方向にー1、y軸方向にー3だけ平行移動し、さらにx軸に関して対称移動をしたら、放物線y=x²-2x+2に移った。もとの放物線の方程式を求めよ。
この動画を見る 
PAGE TOP