【高校数学】数Ⅲ-47 極座標と極方程式④ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-47 極座標と極方程式④

問題文全文(内容文):
$O$を極とする次の極方程式を直交座標で表される方程式に直せ。

①$r=\dfrac{1}{2\cos\theta-\sin\theta}$

②$r=\dfrac{2}{1-\sqrt2\cos\theta}$

③$r=\dfrac{2}{1-\cos\theta}$
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$O$を極とする次の極方程式を直交座標で表される方程式に直せ。

①$r=\dfrac{1}{2\cos\theta-\sin\theta}$

②$r=\dfrac{2}{1-\sqrt2\cos\theta}$

③$r=\dfrac{2}{1-\cos\theta}$
投稿日:2017.06.30

<関連動画>

【数C】【平面上のベクトル】ベクトルの基本計算4 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形ABCDについて、次のことを証明せよ。
四角形ABCDが平行四辺形である ⇔ $\overrightarrow{ AC }+\overrightarrow{ BD }=2\overrightarrow{ AD }$



この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第1問〜2つのベクトルで生成される異なる点の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
nを自然数とする。整数i,jに対し、xy平面上の点$P_{i,j}$の座標を
$(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)$
で与える。さらに、i,jを動かしたとき、$P_{i,j}$の取り得る異なる座標の
個数を$S_n$とする。このとき、以下の問いに答えよ。
(1)$n=3$のとき、$\triangle P_{0,0}P_{0,1}P_{0,2}$および$\triangle P_{1,0}P_{1,1}P_{1,2}$を同一平面上
に図示せよ。
(2)$S_4$を求めよ。
(3)平面上の異なる2点A,Bに対して、$AQ=BQ=1$であるような
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。
(4)$S_n$をnを用いて表せ。

2022東京医科歯科大学理系過去問
この動画を見る 

数学を数楽にの川端さん三乗

アイキャッチ画像
単元: #平面上のベクトル#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
座標関係の図形の求め方に関して解説していきます.
この動画を見る 

福田のおもしろ数学568〜平面上の任意の点が2つの有理点を結んだ直線上にあるか

アイキャッチ画像
単元: #平面上のベクトル#平面上の曲線#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$x,y$座標がともに有理数である平面上の点を

有理点と呼ぶ。

平面上のすべての点は$2$つの有理点で定める

直線上に必ず存在するだろうか?
    
この動画を見る 

【高校数学】数Ⅲ-44 極座標と極方程式①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図において$(r、0)$を点$P$の極座標といい、
点$O$を①、半直線$OX$を②、角$\theta$を③という。

極座標に対して、$x、y$座標の組$(x,y)$を④座標といい、
x= ⑤、y=⑥、$r = \sqrt{x ^ 2 + y ^ 2}$が成り立つ。

平面上の曲線が、極座標$(r,\theta)$を用いた式$r=f(\theta)$または
$F(r,\theta)=0$で表されるとき、この方程式を曲線の極方程式という。

中心が極$O$、半径が$a$の円→⑦
中心が$(a,0)$、半径が$a$の円→⑧
極$O$を通り、始線となす角が$\beta$の直線→⑨

図は動画内参照
この動画を見る 
PAGE TOP