福田の数学〜筑波大学2022年理系第3問〜平行四辺形の中の平行四辺形 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2022年理系第3問〜平行四辺形の中の平行四辺形

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 0 \lt t \lt 1とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを\\
t:1-tに内分する点をそれぞれA_1,B_1,C_1,D_1とする。\\さらにA_2,B_2,C_2,D_2およびA_3,B_3,C_3,D_3を次の条件を満たすように定める。\\
(\ 条件\ )k=1,2について、点A_{k+1},B_{k+1},C_{k+1},D_{k+1}はそれぞれ線分A_kB_k,\\
B_kC_k,C_kD_k,D_kA_kをt:1-tに内分する。\\
\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }とするとき、以下の問いに答えよ。\\
(1)\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b } を満たす実数p,q,x,yを\\
tを用いて表せ。\\
(2)四角形A_1B_1C_1D_1は平行四辺形であることを示せ。\\
(3)\overrightarrow{ AD }と\overrightarrow{ A_3B_3 }が平行となるようなtの値を求めよ。\\
\end{eqnarray}
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 0 \lt t \lt 1とする。平行四辺形ABCDにおいて、線分AB,BC,CD,DAを\\
t:1-tに内分する点をそれぞれA_1,B_1,C_1,D_1とする。\\さらにA_2,B_2,C_2,D_2およびA_3,B_3,C_3,D_3を次の条件を満たすように定める。\\
(\ 条件\ )k=1,2について、点A_{k+1},B_{k+1},C_{k+1},D_{k+1}はそれぞれ線分A_kB_k,\\
B_kC_k,C_kD_k,D_kA_kをt:1-tに内分する。\\
\overrightarrow{ AB }=\overrightarrow{ a }, \overrightarrow{ AD }=\overrightarrow{ b }とするとき、以下の問いに答えよ。\\
(1)\overrightarrow{ A_1B_1 }=p\overrightarrow{ a }+q\overrightarrow{ b }, \overrightarrow{ A_1D_1 }=x\ \overrightarrow{ a }+y\ \overrightarrow{ b } を満たす実数p,q,x,yを\\
tを用いて表せ。\\
(2)四角形A_1B_1C_1D_1は平行四辺形であることを示せ。\\
(3)\overrightarrow{ AD }と\overrightarrow{ A_3B_3 }が平行となるようなtの値を求めよ。\\
\end{eqnarray}
投稿日:2022.05.27

<関連動画>

【数B】平面ベクトル:位置ベクトル (1)AGをbとdを用いて表せ。(2)AGの延長と辺BCの交点をHとする。このとき、Hは辺BCをどのような比に内分するか。

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDにおいて、2辺AB,ADの中点をそれぞれE,Fとし、線分BFと線分CEの交点をGとする。AB=B,AD=dとするとき、次の問に答えよ。
(1)AGをbとdを用いて表せ。
(2)AGの延長と辺BCの交点をHとする。このとき、Hは辺BCをどのような比に内分するか。
この動画を見る 

ベクトルの簡単すぎる京大の問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle OAB$において$OA=3,OB=2,\angle AOB=90^{ \circ }$とする。$\triangle OAB$の垂心を$H$とするとき,$\overrightarrow{OH}$を$\overrightarrow{OA}$と$\overrightarrow{OB}$を用いて表せ。
この動画を見る 

【数B】平面ベクトル:ベクトルの終点の存在範囲 その1

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+B(旧課程2021年以前)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学B 平面のベクトル】
△OABに対し、OP=sOA+tOBとする。
次のとき、点Pの存在範囲を求めよ。
(1)s+2t=3
(2)1≦s+t≦2, s≧0, t≧0
この動画を見る 

【数B】ベクトルが「等しい」とは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #アドバンスプラス#アドバンスプラス数Ⅱ・B#その他(中高教材)
指導講師: 理数個別チャンネル
問題文全文(内容文):
|vec(a)|=5であるvec(a)がある。
(1) vec(a)と同じ向きの単位ベクトルを、vec(a)を用いて表せ。
(2) vec(a)と平行で、大きさが3のベクトルを、vec(a)を用いて表せ。
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 全統高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 
PAGE TOP