大学入試問題#133 京都大学(2009) 極方程式の曲線の長さ - 質問解決D.B.(データベース)

大学入試問題#133 京都大学(2009) 極方程式の曲線の長さ

問題文全文(内容文):
極方程式
$r=1+\cos\theta$
$(0 \leqq \theta \leqq \pi)$で表される曲線の長さ$l$を求めよ。

出典:2009年京都大学 入試問題
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
極方程式
$r=1+\cos\theta$
$(0 \leqq \theta \leqq \pi)$で表される曲線の長さ$l$を求めよ。

出典:2009年京都大学 入試問題
投稿日:2022.03.04

<関連動画>

高専数学 微積I #229(1) 媒介変数表示関数のx軸回転体の体積

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq 1$とする.
$x=\sqrt t$
$y=\sqrt t-t$
と$x$軸で囲まれた図形を
$x$軸のまわりに回転してできる回転体の
体積$V$を求めよ.
この動画を見る 

【数C】【平面上の曲線】次の極方程式はどのような曲線を表すか。直交座標の方程式に直して答えよ。(1)r=1/√2+cosθ(2)r=3/1+2cosθ(3)r=2/1+cosθ

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の極方程式はどのような曲線を表すか。
直交座標の方程式に直して答えよ。
(1)$r=\dfrac{1}{\sqrt{2}+cosθ}$
(2)$r=\dfrac{3}{1+2cosθ}$
(3)$r=\dfrac{2}{1+cosθ}$
この動画を見る 

数検準1級1次過去問【2020年12月】5番:極方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#媒介変数表示と極座標#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
5⃣ 極方程式
r=4sinθ+6cosθ
で表される図形を求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#三角関数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ a,bを定数とし、関数$f(x)=x^2+ax+b$ とする。方程式$f(x)=0$の2つの解$\alpha,\beta\\$
が次式で与えられている。
$\alpha=\frac{\sin\theta}{1+\cos\theta}$, $\beta=\frac{\sin\theta}{1-\cos\theta}\\$
ここで$\theta$は、$0 \lt \theta \lt \pi$の定数である。次の問いに答えよ。
$(1)a,b$を$\theta$を用いて表せ。
$(2)\theta$が$0$ $\lt \theta \pi$で変化するとき、放物線$y=f(x)$の頂点の軌跡を求めよ。
$(3)\int_0^{2\sin\theta}f(x)dx=0$ となる$\theta$の値を全て求めよ。


2021早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第3問〜2次曲線の極方程式と置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$a,\ h$を正の実数とする。座標平面において、原点Oからの距離が
直線$x=h$からの距離の$a$倍であるような点$P$の軌跡を考える。点$P$の座標を$(x,\ y)$とする
と、$x,\ y$は次の方程式を満たす。
$(1-\boxed{ア})\ x^2+2\ \boxed{イ}\ x+y^2=\boxed{ウ}...(1)$

$\boxed{ア},\ \boxed{イ},\ \boxed{ウ}$の解答群
$⓪a^2 ①h^2 ②a^3 ③a^2h ④ah^2$
$⑤h^3 ⑥b^4 ⑦a^2h^2 ⑧ah^3 ⑨h^4$

次に、座標平面の原点$O$を極、$x$軸の正の部分を始線とする極座標を考える。
点$P$の極座標を$(r\ \theta)$とする。$r \leqq h$を満たすとき、
点$P$の直交座標$(x,\ y)$を$a,\ h,\ θ$を用いて表すと

$(x,\ y)=(\frac{\boxed{エ}}{\boxed{オ}}\ \cos θ,\ \frac{\boxed{エ}}{\boxed{オ}}\ \sin θ)...(2) $
$\boxed{エ},\ \boxed{オ}$の解答群
$⓪h①ah②h^2③ah^2④1+a\cos θ$
$⑤1+a\sin θ ⑥a\cos θ-1⑦a\sin θ-1⑧1-a\cos θ ⑨1-a\sin θ$

(1)から、$a=\boxed{カ}$のとき、点$P$の軌跡は放物線$x=\boxed{キ}\ y^2+\boxed{ク}$となる。
この放物線とy軸で囲まれた図形の面積$S$は
$S=2\int_0^{\boxed{ケ}}xdy=2\int_0^{\boxed{ケ}}(\boxed{キ}\ y^2+\boxed{ク})dy=$
$\frac{\boxed{コ}}{\boxed{サ}}\ h^2$
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。
$\int_0^{\frac{\pi}{2}}\frac{\cos θ}{(1+\cos θ)^2}dθ=\frac{\boxed{シ}}{\boxed{ス}}$

$\boxed{キ},\ \boxed{ク},\ \boxed{ケ}$の解答群
$⓪h ①2h ②\frac{h}{2} ③-\frac{h}{2} ④\frac{1}{h}$
$⑤-\frac{1}{h} ⑥\frac{1}{2h} ⑦-\frac{1}{2h} ⑧h^2 ⑨-h^2$

2022明治大学全統理系過去問
この動画を見る 
PAGE TOP