首都圏有名私立大学入試数学解説アプリのご紹介 - 質問解決D.B.(データベース)

首都圏有名私立大学入試数学解説アプリのご紹介

問題文全文(内容文):
首都圏有名私立大学入試数学解説アプリの紹介動画です
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
首都圏有名私立大学入試数学解説アプリの紹介動画です
投稿日:2020.02.05

<関連動画>

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 平面上の長さ3の線分AB上に、AP=t\ (0 \lt t \lt 3)を満たす点Pをとる。\hspace{72pt}\\
中心をOとする半径1の円Oが、線分ABと点Pで接しているとする。\alpha=\angle OAB,\ \beta=\angle OBA\\
とおく。\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)をtで表すと、\\
\tan\alpha=\boxed{\ \ あ\ \ },\ \tan\beta=\boxed{\ \ い\ \ },\ \tan(\alpha+\beta)=\boxed{\ \ う\ \ }\ である。\\
0 \lt \alpha+\beta \lt \frac{\pi}{2}であるようなtの範囲は\boxed{\ \ え\ \ }\ である。\\
tは\ \boxed{\ \ え\ \ }\ の範囲にあるとする。点A,\ Bから円Oに引いた接線の接点のうち、\\
PでないものをそれぞれQ,\ Rとすると、\angle QAB+\angle RBA \lt \piである。\\
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、\\
その交点をCとすると、円Oは三角形ABCの内接円である。\\
このとき、線分CQの長さをtで表すと\ \boxed{\ \ お\ \ }\ である。\\
また、tが\ \boxed{\ \ え\ \ }\ の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は\boxed{\ \ か\ \ }である。
\end{eqnarray}

2022明治大学理工学部過去問
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第1問〜媒介変数表示で表された曲線の長さと接線の傾きと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 媒介変数t\ (t \geqq 0)に対して、x=\frac{4}{\sqrt3}t^{\frac{3}{2}},y=2tで表される曲線C上に\\
点P_1とP_2がある。原点から点P_1までの曲線の長さは\frac{28}{9}であり、点P_2における曲線C\\
の接線の傾きは\frac{1}{3}である。以下の問いに答えよ。\\
(1)点P_1の座標(x_1,y_1)を求めよ。\\
(2)点P_2の座標(x_2,y_2)を求めよ。\\
(3)曲線Cとy軸、および2直線y=y_1,y=y_2で囲まれた図形を、y軸の周りに1回転\\
してできる回転体を考える。この回転体の体積を求めよ。
\end{eqnarray}

2022浜松医科大学医学部過去問
この動画を見る 

【数学】2022年度神奈川県立高校入試数学大問2

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(ア)$0.2x+0.8y=1,\dfrac{1}{2}x+\dfrac{7}{8}y=-2$

(イ)$4x^2-x-2=0$

(ウ)$y=\dfrac{-1}{4}x^2,$xの変域が$-2\leqq x\leqq 4$のとき,yの変域は?

(エ)A班の生徒と,A班よりも5人少ないB班の生徒で,体育館にイスを並べた。A班の生徒はそれぞれ3脚ずつ並べ、B班の生徒はそれぞれ4脚ずつ並べたところ,A班の生徒が並べたイスの総数はB班の生徒が並べたイスの総数より3脚多かった。A班の生徒の人数を求めなさい。

(オ)$x=\sqrt6+\sqrt3,y=\sqrt6-\sqrt3$ のとき、$x^2y+xy^2$の値は?
この動画を見る 

2019 東大入試問題 タクミの東大入試問題解説が聴けるのはここだけ!Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\int_0^1(x^2+\displaystyle \frac{x}{\sqrt{ 1+x^2 }})(1+\displaystyle \frac{x}{(1+x^2)\sqrt{ 1+x^2 }})d_{x}\end{eqnarray}$

出典:2019年東京大学入試問題
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第2問〜空間の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 空間内に立方体ABCD-EFGHがある。辺ABを2:1に内分\\
する点をP、線分CPの中点をQとする。\hspace{91pt}\\
(1)\overrightarrow{ AQ }=\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\overrightarrow{ AB }+\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}\overrightarrow{ AD }である。\hspace{61pt}\\
(2)線分AG上の点Rを\overrightarrow{ QR }∟\overrightarrow{ AG }となるようにとると\hspace{29pt}\\
\overrightarrow{ AR }=\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\overrightarrow{ AG }である。\\
(3)直線QRが平面EFGHと交わる点をSとすると\hspace{42pt}\\
\overrightarrow{ AS }=\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}\overrightarrow{ AB }+\frac{\boxed{\ \ ナ\ \ }}{\boxed{\ \ 二\ \ }}\overrightarrow{ AD }+\boxed{\ \ ヌ\ \ }\ \overrightarrow{ AE }である。
\end{eqnarray}

2022上智大学文系過去問
この動画を見る 
PAGE TOP