大学入試問題#838「基本問題」 #岩手大学(2023) #定積分 - 質問解決D.B.(データベース)

大学入試問題#838「基本問題」 #岩手大学(2023) #定積分

問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2}{\sqrt{ x-1 }} dx$

出典:2023年岩手大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x^2}{\sqrt{ x-1 }} dx$

出典:2023年岩手大学 入試問題
投稿日:2024.06.03

<関連動画>

【誘導あり:概要欄】大学入試問題#256 神戸大学2012 #極限 #はさみうちの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$S_n=\displaystyle \sum_{k=1}^{n^3-1}\displaystyle \frac{1}{k\ log\ k}$

(1)
$2 \leqq k$:自然数
$\displaystyle \frac{1}{(k+1)log(k+1)} \lt \displaystyle \int_{k}^{k+1}\displaystyle \frac{dx}{x\ log\ x} \lt \displaystyle \frac{1}{k\ log\ k}$

(2)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。

出典:2012年神戸大学 入試問題
この動画を見る 

【高校数学】信州大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分88日目~47都道府県制覇への道~【㉛長野】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【信州大学 2023】
tを実数とし、座標空間内の2点$P(0,0,t^2-1), Q(t,1,e^t+e^{-t}-e-e^{-1})$を考える。tを$-1≦t≦1$の範囲で動かすとき、線分PQが通過してできる曲面および2平面$y=1,z=0$で囲まれてできる立体の体積を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第2問(3)〜絶対値の付いた2次不等式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(3)aを正の定数とし、不等式
$|x^2-ax+3| \leqq 1$
の解を実数の範囲で考える。
0 $\lt a \lt \boxed{\ \ ナ\ \ }$のとき、この不等式の解は存在しない。
$\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }$のとき、この不等式の解は
ある実数$p,q$によって$p \leqq x \leqq q$と表される。
$a \gt \boxed{\ \ ニ\ \ }$のときこの不等式の解は$\boxed{\ \ ヌ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

大学入試問題#819「楽に計算したい」 #奈良教育大学(2009) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
$f(x)=\cos\ x+2\displaystyle \int_{0}^{\frac{\pi}{2}} tf(t) \sin\ t\ dt$

出典:2009年奈良教育大学
この動画を見る 

福田の数学〜約数の個数を返す関数の性質〜北里大学2023年医学部第1問(4)〜約数の個数と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
( 4 )正の整数 N に対して、の正の約数の個数を(い)とする。例えば、12の正の約数は 1 , 2 , 3 , 4 , 6 , 12 の 6 個であるから、$f(12)= 6$である。
(i)$f(5040)=\fbox{シ}$である。
(ii)$f(k)=15$を満たす正の整数$k$のうち、 2 番目に小さいものは$\fbox{ス}$である。
(iii)大小2つのサイコロを投げるとき、出る目の積を$l$とおく。$f(l)=4$となる確率は$\fbox{セ}$である。
(iv)正の整数mとnは互いに素で、等式$f(mn)=3f(m)+5f(n)-13$を満たすとする。このとき、$mn$を最小にする$m$と$n$の組$(m,n)$は$\fbox{ソ}$である。

2023杏林大学医過去問
この動画を見る 
PAGE TOP