【高校数学】 数Ⅱ-112 加法定理の応用②・3倍角の公式編 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-112 加法定理の応用②・3倍角の公式編

問題文全文(内容文):
①$sin3\alpha=3\sin\alpha-4\sin^3\alpha$を証明しよう。

②$cos3\alpha=3\cos\alpha-4\cos^3\alpha$を証明しよう。
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$sin3\alpha=3\sin\alpha-4\sin^3\alpha$を証明しよう。

②$cos3\alpha=3\cos\alpha-4\cos^3\alpha$を証明しよう。
投稿日:2015.08.28

<関連動画>

【高校数学】一緒に解こう三角関数の合成 4-15【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) 0≦x<2πのとき、次の方程式を解け。
  sin x-$\sqrt{3}$cos x=1


(2)次の関数の最大値と最小値、およびそのときのxの値を求めよ。
  y=sin x+cos x(0≦x≦2π)
この動画を見る 

福田のわかった数学〜高校2年生079〜三角関数(18)2直線のなす角(2)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(18) なす角(2)

$y=3x+1$と$\frac{\pi}{6}$の角をなし、原点を通る直線の方程式を求めよ。
この動画を見る 

福田の数学〜早稲田大学2024商学部第2問〜正24角形の頂点を結んでできる四角形の面積と確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#三角関数#加法定理とその応用#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、単位円上の24個の点を${\textrm P}_n(\cos\dfrac{n}{12}\pi,\sin\dfrac{n}{12}\pi)~(n=1,2,3,\cdots,24)$とする。1から24までの番号を付けた24枚のカードから4枚取り出す。取り出したカードの番号を$a,b,c,d$とするとき、点${\textrm P}_a,{\textrm P}_b,{\textrm P}_c,{\textrm P}_d$を頂点とする四角形を$R$とする。四角形$R$の面積の取りうる値を大きい順に$S_1,S_2,S_3$とする。
(1)$S_2$を求めよ。
(2)四角形$R$の面積が$S_3$になる確率を求めよ。
この動画を見る 

福田のわかった数学〜高校2年生084〜三角関数(23)重要な変形(1)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(23) 重要な変形(1)
$\triangle ABC$において
$\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C$
を証明せよ。
この動画を見る 

【高校数学】 数Ⅱ-107 加法定理①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\sin(\alpha+\beta)=$____

②$\cos(\alpha+\beta)=$____

③$\sin(\alpha-\beta)=$____

④$\cos(\alpha-\beta)=$____

◎次の値を求めよう。

⑤$\cos 75°$

⑥$\sin 105°$

⑦$\sin 15°$
この動画を見る 
PAGE TOP