中2数学「二等辺三角形である証明」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「二等辺三角形である証明」【毎日配信】

問題文全文(内容文):
中2~二等辺三角形である証明~

例1 右の図の△ABCで、∠Bの二等分線と辺ACとの交点をDとします。また、点Dを通り、辺BCに平行な直線と辺ABの交点をEとします。このとき、△EBDは二等辺三角形であることを証明しなさい。

※図は動画内参照
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~二等辺三角形である証明~

例1 右の図の△ABCで、∠Bの二等分線と辺ACとの交点をDとします。また、点Dを通り、辺BCに平行な直線と辺ABの交点をEとします。このとき、△EBDは二等辺三角形であることを証明しなさい。

※図は動画内参照
投稿日:2023.03.26

<関連動画>

中2数学「2直線の交点の求め方」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~2直線の交点の求め方

例1 y = - x + 3と =2x-3の交点の座標を求めなさい。

例2 y = 3分の1 x - 2と、y =2x+3の交点の座標を求めなさい。
この動画を見る 

【高校受験対策】数学-図形21/後編

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形21

Q.
右の図のような、$AB<AD$の長方形$ABCD$があります。 点$P$は対角線$BD$上の点で、$AP=AB$です。また点$Q$は辺$AD$上の点で、$\angle APQ=90°$です。
このとき、次の各問に答えなさい。

①$△APQ$と$△CDQ$が合同であることを証明しなさい。

②$\angle PAQ=52°$のとき、$\angle PQC$の大きさを求めなさい。

③$△ABP$の面積が$24cm^2$、$△PDQ$の面積が$25cm^2$のとき、 長方形$ABCD$の面積を求めなさい。
この動画を見る 

【数学】中2-20 連立方程式の利用① お金編

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①________を$X,y$とおいて
2つの式を作ろう!!

②$1$個$80$円のみかんと$1$個$130$円のりんごを
あわせて$10$個買うと$950$円でした。
みかんとりんごの買った数はそれぞれいくつ?

③とあるテーマパークに行ったら、おとな$2$人と子ども$3$人で$11800$円、 おとな$1$人と子ども$2$人で$6800$円でした。
おとな$1$人分と子ども$1$人分の入場料は それぞれいくら?

④なし$4$個とすいか$1$個を買うと$1070$円、
なし$3$個とすいか$2$個を買うと$1590$円になる。
なし$1$個とすいか$1$個の値段はそれぞれいくら?
この動画を見る 

【高校受験対策】数学-関数39

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
和夫さんは、本を返却するために家から1800m離れた図書館へ行った。和夫さんは午後4時に家を出発し、毎分180mの速さで5分間走った後、毎分90mの速さで10分間歩いて、図書館に到着した。
その後、本を返却してしばらくたってから図書館を出発し、家へ毎分100mの速さで歩いて帰ったところ、午後4時45分に到着した。

次の図は、午後4時$x$分における家からの道のりを$y$mとして、$x$と$y$の関係をグラフに表したものである。
次の間1~間4に答えなさい。

問1
和夫さんは午後4時3分に郵便局の前を通った。家から郵便局の前までの道のりを求めなさい。

問2
和夫さんが図書館へ行く途中で、歩き始めてから図書館に着くまでの$x$と$y$の関係を式で表しなさ い。ただし、$x$の変域を求める必要はありません。

間3
和夫さんが図書館にいた時間は何分間か、求めなさい。

問4
妹の美紀さんは、午後4時18分に家を出発し、和夫さんと同じ道を通り、図書館へ一定の速さで向かったところ、午後4時33分に和夫さんと出会った。美紀さんが図書館へ向かったときの速さは毎分何mか求めなさい。
この動画を見る 

みんな騙されるくない?

アイキャッチ画像
単元: #数学(中学生)#中2数学#数A#場合の数と確率#確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle \frac{1}{100}$の確率でレアが当たる。
100回引く。
レアは絶対当たる?
この動画を見る 
PAGE TOP