【数学】有理化がなぜ必要なのか?解説してみた! - 質問解決D.B.(データベース)

【数学】有理化がなぜ必要なのか?解説してみた!

問題文全文(内容文):
有理化って何のためにしてるか知っていますか??
チャプター:

0:00 OP
0:06 開始

単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
有理化って何のためにしてるか知っていますか??
投稿日:2022.12.07

<関連動画>

姪(高1)からの質問

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\frac{x+y}{3}=\frac{y+z}{6}=\frac{z+x}{7} \neq 0$
$\frac{x^3+y^3+z^3}{(x-y)(y-z)(z-x)}$
x,y,z正
$\frac{yz}{x}$=$\frac{zx}{4y}$=$\frac{xy}{9z}$
$\frac{x+y+z}{\sqrt{x^2+y^2+z^2}}$
この動画を見る 

福田のわかった数学〜高校1年生028〜いろいろなグラフ(2)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} いろいろなグラフ(2)\\
-2 \leqq x \leqq 4の範囲で\\
\\
y=[x]-x\\
\\
のグラフを描け。
\end{eqnarray}
この動画を見る 

2021昭和(医)いわくつき学習院の過去問と同じ!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\sqrt{n^2-9n+19})^{n^2+5n-14}=1$を満たす自然数$n$をすべて求めよ.

2021昭和(医)
この動画を見る 

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問前編〜空間図形の通過範囲の面積と体積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標空間において原点 O を中心とする半径 1 の円 C がxy平面上にあり、ェ$\gt 0$の領域において点 A ( 0 , -1 , 0 )から点 B ( 0 , 1 , 0 )まで移動する C 上の動点を P とする。
( 1 )下記の 2 条件を満たす直角二等辺三角形 PQR を考える。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・点 R のz座標は正であり、直線 PR はz軸に平行である。
点 P が点 A から点 B まで移動するとき、三角形 PQR の周および内部が通過してできる立体について、以下の間いに答えよ。
(a) 点 P が点 A から点 B まで移動するとき、線分 PR が通過してできる曲面の展開図は、横軸に弧 AP の長さ、縦軸に線分 PR の長さをとったグラフを考えればよく、$\fbox{ア}$で表される概形となり、その面積は$\fbox{イ}$である。
線分 PQ の中点を M とし、点 M から直線 QR に引いた垂線と線分 QR との交点を H とする。点 H は線分 QR を 1:$\fbox{ウ}$に内分する点である。点 Pの位置に依らず、線分の長さについて$\fbox{エ}×(MH)^2+(OM)^2=1$が成り立つ。点Pが点 A から点 B まで移動するとき、線分 MHが通過する領域の概形は$\fbox{オ}$であり、面積は$\frac {\sqrt {{\fbox{カ}}}}{\fbox{キ}}\pi$である。
(b) 点 P が点 A から点 B まで移動するとき、線分 QR が通過してできる曲面上において、 2 点 A , B を結ぶ最も短い曲線は$/fbox{ク}$が描く曲線である。
$\fbox{ク}$の解答群
①点Q
②点R
③設問(a)で考えた点H
④線分QRとyz平面との交点
⑤線分QRを1:$\sqrt{2}$に内分する点
⑥線分QRを$\sqrt{2}$:1に内分する点
⑦三角形PQRの重心からッ線分QRに引いた垂線と線分QRとの交点
(c) 点 P が点 A から点 B まで移動するとき、線分 PQ を直径とするxz平面に平行な円が通過してできる球の体積は$\frac{\fbox{ケ}}{\fbox{コ}}\pi$である。また$\angle PQR$の面積は、線分 PQを直径とする円の面積の$\frac{\fbox{サ}}{\pi}$倍である。よって、立体$V$の体積は$\frac{\fbox{シ}}{\fbox{ス}}$である。
( 2 ) $z \geqq 0$の領域において、yz平面上の点 T を頂点とし、 2 点 P , Q を通る放物線$L$を考える。ただし、 Q, T は下記の 2 条件を満たす点とする。
・点 Q は C 上にあり、直線 PQ はx軸に平行である。
・三角形 PQT はxz平面に平行であり、点 T の z 座標は線分 PQ の長さに等しい。
点 P が( 1 , 0 , 0 )であるとき、放物線$L$を表す式は
$y=0,z=\fbox{セソ}x^2+\fbox{タ}$(ただし、-1 \leq x \leq 1)であり、この放物線と線分PQで囲まれる図形の面積は$\frac{\fbox{チ}}{\fbox{ツ}}$である。
点 P が点 A から点 B まで移動するとき、放物線$L$と線分 PQ で囲まれる図形が通過してできる立体の体積は$\frac{\fbox{テト}}{\fbox{ナ}}$である。

2023杏林大学過去問
この動画を見る 

【中学数学】平方根・ルートの近似値の問題演習~解き方伝授~ 2-8【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\sqrt{2}=1.41,\sqrt{5}=2.23$として次の値を求めよ
(1)$\sqrt{200}$
(2)$\sqrt{0.02}$
(3)$\sqrt{0.2}$
この動画を見る 
PAGE TOP