単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [2]右の図のように、\triangle ABCの外側に辺AB,BC,CAをそれぞれ1辺とする\\
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ\\
線分で結んだ図形を考える。以下において\\
BC=a, CA=b, AB=c\\
\angle CAB=A, \angle ABC=B, \angle BCA=C とする。\\
\\
(1)b=6, c=5, \cos A=\frac{3}{5}のとき、\sin A=\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}であり、\\
\triangle ABCの面積は\boxed{\ \ タチ\ \ }、\triangle AIDの面積は\boxed{\ \ ツテ\ \ }である。\\
\\
(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。\\
このとき、S_1-S_2-S_3 は\\
・0° \lt A \lt 90°のとき\boxed{\ \ ト\ \ } ・A=90°のとき\boxed{\ \ ナ\ \ }\\
・90° \lt A \lt 180°のとき\boxed{\ \ ニ\ \ }\\
\\
\boxed{\ \ ト\ \ }~\boxed{\ \ ニ\ \ }の解答群\\
⓪0である ①正の値である ②負の値である ③正の値も負の値もとる\\
\\
(3)\triangle AID,\triangle BEF,\triangle CGHの面積をそれぞれT_1,T_2,T_3とする。\\
このとき、\boxed{\ \ ヌ\ \ }である。\\
\\
\boxed{\ \ ヌ\ \ }の解答群\\
⓪a \lt b \lt cならばT_1 \gt T_2 \gt T_3\\
①a \lt b \lt cならばT_1 \lt T_2 \lt T_3\\
②Aが鈍角ならばT_1 \lt T_2 かつT_1 \lt T_3\\
③a,b,cの値に関係なく、T_1 = T_2 = T_3\\
\\
(4)\triangle ABC,\triangle AID,\triangle BEF,\triangle CGHのうち、外接円の半径が最も小さいもの\\
を求める。0° \lt A \lt 90°のとき、ID \boxed{\ \ ネ\ \ } BCであり、\\
(\triangle AIDの外接円の半径)\boxed{\ \ ノ\ \ }(\triangle ABCの外接円の半径)\\
であるから、外接円の半径が最も小さい三角形は\\
0° \lt A \lt B \lt C \lt 90°のとき、\boxed{\ \ ハ\ \ }である。\\
0° \lt A \lt B \lt 90° \lt Cのとき、\boxed{\ \ ヒ\ \ }である。\\
\\
\boxed{\ \ ネ\ \ }、\boxed{\ \ ノ\ \ }の解答群\\
⓪\lt ①= ②\gt\\
\\
\boxed{\ \ ハ\ \ }、\boxed{\ \ ヒ\ \ }の解答群\\
⓪\triangle ABC ①\triangle AID ②\triangle BEF ③\triangle CGH\\
\end{eqnarray}
2021共通テスト数学過去問
この動画を見る