大学入試問題#259 島根大学(2012) #微分 - 質問解決D.B.(データベース)

大学入試問題#259 島根大学(2012) #微分

問題文全文(内容文):
$f(x)=|x|\sin\ x$の$x=0$における微分可能性を調べよ。

出典:2012年島根大学 入試問題
チャプター:

00:00 問題提示
00:15 本編スタート
04:28 作成した解答①
04:41 作成した解答②

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=|x|\sin\ x$の$x=0$における微分可能性を調べよ。

出典:2012年島根大学 入試問題
投稿日:2022.07.21

<関連動画>

福田の1.5倍速演習〜合格する重要問題057〜慶應義塾大学大学2019年度商学部第3問〜グループ分けの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 男子7人、女子5人の12人の中から3人を選んで第1グループを作る。次に、残った人の中から3人を選んで第2グループを作る。
(1)第1グループの男子の数が
0人である確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イウ\ \ }}$
1人である確率は$\displaystyle\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}$
2人である確率は$\displaystyle\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}$
3人である確率は$\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シス\ \ }}$
である。

(2)第1グループも第2グループも男子の数が1人である確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。また、第2グループの男子の数が1人である確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。

(3)第2グループの男子の数が1人であるとき、第1グループの男子の数も1人である確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナニ\ \ }}$である。

2019慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$aを2以上の整数、pを整数とし、$s=2^{2p+1}$とおく。実数$x,y$が等式
$2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y$
を満たすとき、yをxの関数として表したものを$y=f(x)$とする。
(1)対数の記号を使わずに、$f(x)$を$a,p$およびxを用いて表せ。
(2)$a=2,\ p=0$とする。このとき、$n \leqq f(m)$を満たし、かつ、$m+n$が正となる
ような整数の組(m,n)の個数を求めよ。
(3)$y=f(x)(0 \leqq x \leqq 2^{a+1})$の最大値が$2^{3a}$以下となるような整数pの
最大値と最小値を、それぞれaを用いて表せ。

2022慶應義塾大学経済学部過去問
この動画を見る 

大学入試問題#56 立教大学(2021) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\{a_n\}:$等比数列
$\displaystyle \frac{1}{a_1}+\displaystyle \frac{1}{a_2}=3$
$\displaystyle \frac{1}{a_2}+\displaystyle \frac{1}{a_3}=2$をみたすとき
$\displaystyle \sum_{n=1}^\infty\displaystyle \frac{1}{a_n}$の値を求めよ。

出典:2021年立教大学 入試問題
この動画を見る 

大学入試問題#61 大阪工業大学(2021) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪工業大学
指導講師: ますただ
問題文全文(内容文):
$S_n=\displaystyle \frac{n+3}{2}a_n-6$を満たすとき
一般項$a_n$を求めよ。

出典:2021年大阪工業大学 入試問題
この動画を見る 

福田の数学〜九州大学2025理系第5問〜3次方程式の解と確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#複素数と方程式#場合の数#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$1$個のさいころを$3$回続けて投げ、

出る目を順に$a,b,c$とする。

整式$f(x)=(x^2-ax+b)(x-c)$

について、以下の問いに答えよ。

(1)$f(x)=0$をみたす実数$x$の個数が

$1$個である確率を求めよ。

(2)$f(x)=0$をみたす自然数$x$の個数が

$3$個である確率を求めよ。

$2025$年九州大学理系過去問題
この動画を見る 
PAGE TOP