円と放物線 2024明大中野 - 質問解決D.B.(データベース)

円と放物線 2024明大中野

問題文全文(内容文):
y=12x2
座標は?
*図は動画内参照
2024明治大学付属中野高等学校
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
y=12x2
座標は?
*図は動画内参照
2024明治大学付属中野高等学校
投稿日:2024.03.06

<関連動画>

福田の数学〜慶應義塾大学2022年看護医療学部第2問(1)〜円が直線から切り取る弦の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2(1)円x2+y22x+6y=0をCとするとき、
円Cの中心の座標は    であり、
半径は    である。また、円Cと直線y=3x1の2つの共有点をA,Bとする
とき、線分ABの長さは    であり、線分ABの垂直二等分線の方程式は
y=    である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角αだけ
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'をx,y,s,t,α
の式で表すとx=    , y=    となる。
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径a2で原点O
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。
そして、接点の座標がはじめて(acosβ,asinβ)(0β2π)となるようにする。
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。
(i)点B(a2,0)を中心として、円Kを    に角    だけ回転させる。
(ii)原点Oを中心として、円Kを    に角    だけ回転させる。

    ,    ,    ,    の選択肢
時計回り,反時計回り,β,2β,12β

(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)
(ただし、0<b<a)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた
やり方でCに沿って転がすとき、点Qが動いてできる曲線をS1とする。S1上の
点の座標を(x,y)として、S1の方程式をx,yを用いて書くと    となる。

(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。
2つの円の接点が円Kを    回転したとき、点Rははじめてもとの位置
(0,a)に戻る。Rが描く曲線をS2とする。原点Oを極とし、x軸の正の部分を
始線とする極座標#(r,θ)によるS2の極方程式はr=    である。
ただしr,θはそれぞれS2上の点の原点からの距離、および偏角である。

2022慶應義塾大学医学部過去問
この動画を見る 

【高校数学】 数Ⅱ-72 2つの円②

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①中心が点(5,12)で、円x2+y2=9に外接する円を求めよう。

②中心が点(4,-3)で、円x2+y2=49に内接する円を求めよう。
この動画を見る 

福田の数学〜神戸大学2024年理系第2問〜放物線と2接線た作る三角形の重心の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3 a, b, cは実数で、a≠0とする。放物線Cと直線l1, l2をそれぞれ
Cy=ax2+bx+c
l1y=3x+3
l2y=x+3
で定める。l1, l2がともにCと接するとき、以下の問いに答えよ。
(1)bを求めよ。caを用いて表せ。
(2)Cx軸と異なる2点で交わるとき、1aのとりうる値の範囲を求めよ。
(3)Cl1の接点をP、Cl2の接点をQ、放物線Cの頂点をRとする。aが(2)の条件を満たしながら動くとき、PQRの重心Gの軌跡を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(5)直線群と軌跡、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1 2直線x+5y7=0 ①, 2xy4=0 ②の交点を通り、
直線x+4y6=0 に垂直な直線の方程式を求めよ。

2 mが実数全体を動くとき、次の2直線の交点Pはどんな図形を描くか。
mxy=0 ①  x+mym2=0 
この動画を見る 
PAGE TOP preload imagepreload image