【高校数学】 数Ⅱ-126 指数の拡張④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-126 指数の拡張④

問題文全文(内容文):
①$(a^\frac{1}{3}+b^\frac{1}{3})(a^\frac{2}{3}-a^\frac{1}{3}b^\frac{1}{3}+b^\frac{2}{3})$を計算しよう。

②$2^{x}+2^{-x}=3$のとき、$2^{2x}+2^{-2x}$の値を求めよう。

③$2^{x}+2^{-x}=3$のとき、$2^{3x}+2^{-3x}$の値を求めよう。
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(a^\frac{1}{3}+b^\frac{1}{3})(a^\frac{2}{3}-a^\frac{1}{3}b^\frac{1}{3}+b^\frac{2}{3})$を計算しよう。

②$2^{x}+2^{-x}=3$のとき、$2^{2x}+2^{-2x}$の値を求めよう。

③$2^{x}+2^{-x}=3$のとき、$2^{3x}+2^{-3x}$の値を求めよう。
投稿日:2015.09.12

<関連動画>

福田のおもしろ数学182〜2x3x5x7x11x13の10乗の桁数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$(2×3×5×7×11×13)^{10}$ の10進法での桁数を求めよ。
この動画を見る 

三重大2020指数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべての実数$x$に対して$2^{3x}\geqq 3・2^x-1$が成り立つ$a$の範囲を求めよ.

2020三重大過去問
この動画を見る 

【数Ⅱ】【指数関数と対数関数】指数計算2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0, $a^{2x}=5$のとき,$(a^{4x}-a^{-4x})÷(a^x-a^{-x})$の値を求めよ
$2^x-2^{-x}=3$のとき,$2^x+2^{-x}$の値を求めよ
地球と太陽の距離を$1.5×10^{11}$m,光の進む速さを毎秒$3.0×10^8$mとする。
このとき,光が太陽から地球まで到達するには何秒かかるか
この動画を見る 

早稲田 指数・対数 不等式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
$6^x-2・2^x-9・3^x+18 \leqq 0$を満たす整数xの最小値・最大値を求めよ。
この動画を見る 

ベトナム数学オリンピック

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a+b+c=2022$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}$
$\dfrac{1}{a^{2023}}+\dfrac{1}{b^{2023}}+\dfrac{1}{c^{2023}}=?$
これを解け.

ベトナム数学オリンピック過去問
この動画を見る 
PAGE TOP