福田の数学〜東京工業大学2024年理系第4問〜表の出る確率が異なるコインを投げたときの表が奇数枚出る確率と極限 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2024年理系第4問〜表の出る確率が異なるコインを投げたときの表が奇数枚出る確率と極限

問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$C_1$,...,$C_n$を$n$枚の硬貨とする。各$k$=1,...,$n$に対し、硬貨$C_k$を投げて表が出る確率を$p_k$、裏が出る確率を1-$p_k$とする。この$n$枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)$p_k$=$\frac{1}{3}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$X_n$を求めよ。
(2)$p_k$=$\frac{1}{2(k+1)}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$Y_n$を求めよ。
(3)$n$=$3m$($m$は正の定数)で$k$=1,...,$3m$に対して
$p_k$=$\left\{\begin{array}{1}
\frac{1}{3m} (k=1,...,m)   \\
\frac{2}{3m} (k=m+1,...,2m)\\
\frac{1}{m} (k=2m+1,...,3m)\\
\end{array}\right.$
とする。このゲームで成功する確率を$Z_{3m}$とするとき、$\displaystyle\lim_{m \to \infty}Z_{3m}$ を求めよ。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$C_1$,...,$C_n$を$n$枚の硬貨とする。各$k$=1,...,$n$に対し、硬貨$C_k$を投げて表が出る確率を$p_k$、裏が出る確率を1-$p_k$とする。この$n$枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)$p_k$=$\frac{1}{3}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$X_n$を求めよ。
(2)$p_k$=$\frac{1}{2(k+1)}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$Y_n$を求めよ。
(3)$n$=$3m$($m$は正の定数)で$k$=1,...,$3m$に対して
$p_k$=$\left\{\begin{array}{1}
\frac{1}{3m} (k=1,...,m)   \\
\frac{2}{3m} (k=m+1,...,2m)\\
\frac{1}{m} (k=2m+1,...,3m)\\
\end{array}\right.$
とする。このゲームで成功する確率を$Z_{3m}$とするとき、$\displaystyle\lim_{m \to \infty}Z_{3m}$ を求めよ。
投稿日:2024.03.19

<関連動画>

福田の数学〜名古屋大学2022年理系第2問〜互いに素になるような確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
1つのサイコロを3回投げる。1回目に出る目をa、2回目に出る目をb、
3回目に出る目をcとする。なおサイコロは1から6までの目が等しい確率で出るもの
とする。
(1)$ab+2c \geqq abc$となる確率を求めよ。
(2)$ab+2cと2abc$が互いに素となる確率を求めよ。

2022名古屋大学理系過去問
この動画を見る 

2022年藤田医科大 確率 超基本問題

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを3回振って目の積が8の倍数となる確率を求めよ.

藤田医科大過去問
この動画を見る 

福田の数学〜立教大学2025理学部第1問(4)〜確率の基本的な性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)箱の中に緑色のカードが$5$枚、

黄色のカードが$4$枚、赤色のカードが$3$枚

入っている。

箱から無作為にカードを$3$枚取り出すとき、

$3$枚とも同じ色である確率は$\boxed{オ}$、

$3$枚の色がすべて異なる確率は$\boxed{カ}$、

$2$枚が同じ色であり、かつ、

残りの$1$枚が他の$2$枚と異なる色である確率は

$\boxed{キ}$である。

$2025$年立教大学理学部過去問題
この動画を見る 

【高校数学】集合の要素の個数~大切なのは公式ではなく理解~ 1-4【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
集合の要素の個数についての説明動画です
この動画を見る 

【高校数学】  数A-7  順列① ・ 基本編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①${}_6 \mathrm{ P }_3=$
②${}_3 \mathrm{ P }_3=$
③${}_7 \mathrm{ P }_2=$
④${}_9 \mathrm{ P }_1=$
⑤$5! =$
⑥${}_6 \mathrm{ P }_0=$

⑦5個の文字a,b,c,d,eから異なる3個を選んで1列に並べるときの並べ方は何通り?

⑧30人の部員の中から、兼任を認めないで、部長・副部長を各1人選ぶとき、選び方は何通り?

⑨異なる7個の玉を机の上で円形に並べるとき、並べ方は何通り?
この動画を見る 
PAGE TOP