福田の数学〜東京工業大学2024年理系第4問〜表の出る確率が異なるコインを投げたときの表が奇数枚出る確率と極限 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2024年理系第4問〜表の出る確率が異なるコインを投げたときの表が奇数枚出る確率と極限

問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$C_1$,...,$C_n$を$n$枚の硬貨とする。各$k$=1,...,$n$に対し、硬貨$C_k$を投げて表が出る確率を$p_k$、裏が出る確率を1-$p_k$とする。この$n$枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)$p_k$=$\frac{1}{3}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$X_n$を求めよ。
(2)$p_k$=$\frac{1}{2(k+1)}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$Y_n$を求めよ。
(3)$n$=$3m$($m$は正の定数)で$k$=1,...,$3m$に対して
$p_k$=$\left\{\begin{array}{1}
\frac{1}{3m} (k=1,...,m)   \\
\frac{2}{3m} (k=m+1,...,2m)\\
\frac{1}{m} (k=2m+1,...,3m)\\
\end{array}\right.$
とする。このゲームで成功する確率を$Z_{3m}$とするとき、$\displaystyle\lim_{m \to \infty}Z_{3m}$ を求めよ。
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$C_1$,...,$C_n$を$n$枚の硬貨とする。各$k$=1,...,$n$に対し、硬貨$C_k$を投げて表が出る確率を$p_k$、裏が出る確率を1-$p_k$とする。この$n$枚の硬貨を同時に投げ、表が出た硬貨の枚数が奇数であれば成功、というゲームを考える。
(1)$p_k$=$\frac{1}{3}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$X_n$を求めよ。
(2)$p_k$=$\frac{1}{2(k+1)}$ ($k$=1,...,$n$)のとき、このゲームで成功する確率$Y_n$を求めよ。
(3)$n$=$3m$($m$は正の定数)で$k$=1,...,$3m$に対して
$p_k$=$\left\{\begin{array}{1}
\frac{1}{3m} (k=1,...,m)   \\
\frac{2}{3m} (k=m+1,...,2m)\\
\frac{1}{m} (k=2m+1,...,3m)\\
\end{array}\right.$
とする。このゲームで成功する確率を$Z_{3m}$とするとき、$\displaystyle\lim_{m \to \infty}Z_{3m}$ を求めよ。
投稿日:2024.03.19

<関連動画>

【宝くじ】数学的に正しい宝くじの必勝法教えます!宝くじの当選確率ってどれくらい?

アイキャッチ画像
単元: #数学(中学生)#場合の数と確率#確率#確率#数学(高校生)
指導講師: こばちゃん塾
この動画を見る 

【数A】確率:感覚でわかる反復試行

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
コインを10回投げる問題に関して解説していきます.
この動画を見る 

確率 法政大

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
白$3n$個,赤$2n$個から3個同時に取り出す.
白2個赤1個である確率を$p_n$とするとき,これを解け.
$\displaystyle \lim_{n\to(x)}P_n$

法政大
この動画を見る 

福田の数学〜北海道大学2024年文系第4問〜正八面体のサイコロと反復試行の確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 各面に1つずつ数が書かれた正八面体のさいころがある。「1」、「2」、「3」が書かれた面がそれぞれ1つずつあり、残りの5つの面には「0」が書かれている。このさいころを水平な面に投げて、出た面に書かれた数を持ち点に加えるという試行を考える。最初の持ち点は0とし、この試行を繰り返す。例えば、3回の試行を行ったとき、出た面に書かれた数が「0」、「2」、「3」であれば、持ち点は5となる。なお、さいころが水平な床面にあるとき、さいころの上部の水平な面を出た面とよぶ。また、さいころを投げるとき、各面が出ることは同様に確からしいとする。
(1)この試行を2回行ったとき、持ち点が1である確率を求めよ。
(2)この試行を4回行ったとき、持ち点が10以下である確率を求めよ。
この動画を見る 

【数A】場合の数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
白玉6個、赤玉2個、青玉2個の計10個の玉を横一列に並べる。ただし、同じ色の玉は区別しない。
(1)並べ方は全部で何通りあるか。
(2)白赤白赤白と連続して並ぶ箇所があるような並べ方は何通りあるか。
(3)次の、赤玉についての条件A、青玉についての条件Bを考える。
A:「同じ色の玉が両隣にある」
B:「異なる色の玉が 両隣にある」
ただし、列の両端の玉は、AもBも満たさないものとする。例えば、 白赤白白白青赤青白白は、2個の赤玉はともにAを満たし、2個の青玉もともにBを 満たす。また、白赤赤白白青青白白白は、2個の青玉はともにBを満たすが、2個 の赤玉はともにAを満たさない。
(i)2個の赤玉がともにAを満たすような並べ方は 何通りあるか。
(ii)2個の赤玉がともにAを満たし、かつ、2個の青玉がともにBを満たすような並べ方は何通りあるか。
この動画を見る 
PAGE TOP