勘で英検合格する確率は? - 質問解決D.B.(データベース)

勘で英検合格する確率は?

問題文全文(内容文):
下記質問の解説動画です
全部勘で英検やって合格する確率ってどれくらいですか?
チャプター:

00:00 はじまり

単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
全部勘で英検やって合格する確率ってどれくらいですか?
投稿日:2023.01.22

<関連動画>

福田の数学〜慶應義塾大学2022年総合政策学部第6問〜新型ウィルス感染拡大による休業要請と補償金の期待値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ 新型ウイルスの感染拡大にともなって、ある国の自治体がある飲食店に1ヵ月間\\
の休業要請を行い、もし飲食店が要請に応じた場合、自治体は飲食店に補償金を\\
払うことになったものとする。いま、この飲食店は補償金が90万円以上であれば\\
要請に応じ、90万円未満なら要請に応じないものとする。補償金の額をC万円と\\
したとき、(C-90)万円を飲食店の超過利益と呼ぶことにする。もしC \lt 90\\
であれば、飲食店は要請に応じず、超過利益は0万円とする。\\
また、この自治体は支払うことのできる補償金の上限が定まっていて、それがD万円\\
(D \geqq C)であったとき、飲食店がC万円で要請に応じた場合、(D-C)万円は\\
補償金の節約分となる。ただし、飲食店が要請に応じなかった場合には、補償金の\\
節約分は0万円とする。\\
(1)まず、自治体が飲食店に休業要請する場合の補償金の額C万円を提示する場合\\
について考える。いま、自治体の補償金の上限が125万円であったとき、自治体\\
の補償金の節約分が最も大きくなるのはC=\boxed{\ \ アイウ\ \ }\ 万円の場合である。\\
(2)次に、飲食店が自治体に休業要請し、自治体が申請を受理した場合に、飲食店\\
は休業と引き替えに補償金を受け取ることができる場合について考える。なお、\\
飲食店は休業申請をする際に90万円以上の補償金の額を自治体に提示するもの\\
とする。また、ここでは自治体が支払うことができる補償金の上限については、\\
125万円か150万円か175万円のどれかに定まっているが公表されておらず、\\
飲食店は125万円である確率が\frac{2}{5}、150万円である確率が\frac{1}{5}、175万円である\\
確率が\frac{2}{5}であると予想しているものとする。\\
ただし、飲食店が提示した補償金の額が、実際に自治体が支払うことができる上限\\
を超えていた場合、自治体は申請を受理せず、そのときの補償金の節約分は0万円\\
になり、申請が受理されなければ、飲食店は休業せず、超過利益は0万円になる。\\
たとえば、飲食店が休業申請をする際にC=160万円を提示した場合、飲食店\\
の超過利益(の期待値)は\boxed{\ \ エオカ\ \ }\ 万円となる。\\
そこで、飲食店が超過利益(の期待値)を最も大きくする補償金の額を休業申請\\
の際に自治体に提示したとすると\\
(\textrm{a})飲食店の超過利益(の期待値)は\boxed{\ \ キクケ\ \ }\ 万円であり、\\
(\textrm{b})自治体の補償金の上限が実際は125万円であった場合、補償金の節約分は\\
\boxed{\ \ コサシ\ \ }\ 万円。\\
(\textrm{c})自治体の補償金の上限が実際は175万円であった場合、補償金の節約分は\\
\boxed{\ \ スセソ\ \ }\ 万円。\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜90%の人が間違う平均の計算〜慶應義塾大学2023年総合政策学部第3問〜確率漸化式と平均の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
あるすごろくのゲ ー ムでは、 1 枚のコインを投げてその表裏でコマを前に進め、10 マス目のゴ ー ルを目指すものとする。
コマは、最初、 1 マス目のスタ ー トの位置にあり、コインを投げて表であれば 2マスだけコマを前に進め、裏であれば 1 マスだけコマを前に進める。ただし、 9マス目で表が出たために 10 マス目を超えて前に進めなくてはならなくなった場合には、ゴ ー ルできずにそこでゲ ー ムは終了するものとする。また、コインの表と裏は等しい確率で出るものとする。このとき、ある 1 回のゲ ー ムの中でnマス目(n= 1 , 2 ,・・・,10)にコマが止まる確率を$p_n$とすると,
$p_1=1,p_2=\frac{1}{2},p_3=\dfrac{\fbox{ア}}{\fbox{イ}},p_4=\dfrac{\fbox{ウ}}{\fbox{エ}}$
である。
$p_n=\dfrac{\fbox{オ}}{\fbox{カ}}\dfrac{\fbox{キ}}{\fbox{ク}}(\dfrac{\fbox{ケ}}{\fbox{コ}})^n$
である。またコマがコールしたとき、スタートからゴールするまでにコインを投げた回数は平均$\dfrac{\fbox{サ}}{\fbox{シ}}$回である

2023慶應義塾大学総合政策学部過去問
この動画を見る 

【数A】場合の数:塗り分け! ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある領域が、右図のように6つの区画に分けられている。境界を接している区画は異なる色で塗ることにして、赤・青・黄・白の4色以内で領域を塗り分ける方法は何通りか。
この動画を見る 

福田のわかった数学〜高校1年生063〜場合の数(2)完全順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(2) 完全順列\hspace{140pt}\\
1,2,3,4を1列に並べたものをa_1a_2a_3a_4とする。\\
a_1≠1,a_2≠2,a_3≠3,a_4≠4を満たす並べ方は何通りあるか。
\end{eqnarray}
この動画を見る 

きょ、京大!?絶対に落としてはいけない2023年度の確率の問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を自然数とする。一個のさいころを$n$回投げ、出た目を順に$X_{1},X_{2}……,X_{n}$とし、$n$個の数の積$X_{1},X_{2}……,X_{n}$を$Y$とする。

(1)$Y$が5で割り切れる確率を求めよ。

京都大過去問
この動画を見る 
PAGE TOP