【高校数学】 数Ⅱ-31 2次方程式の解と判別式④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-31 2次方程式の解と判別式④

問題文全文(内容文):
◎aを定数とするとき、次の2次方程式の解の種類を判別しよう。

①$x^2(a-8)x+a=0$

②$x^2+2(a+1)x+2a^2+5=0$
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎aを定数とするとき、次の2次方程式の解の種類を判別しよう。

①$x^2(a-8)x+a=0$

②$x^2+2(a+1)x+2a^2+5=0$
投稿日:2015.05.17

<関連動画>

福田の数学〜神戸大学2023年文系第1問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$, $b$を実数とする。整式$f(x)$を$f(x)$=$x^2$+$ax$+$b$で定める。以下の問いに答えよ。
(1)2次方程式$f(x)$=0 が異なる2つの正の解をもつための$a$と$b$が満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0 が異なる2つの実数解をもち、それらが共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。
(3)2次方程式$f(x)$=0 の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。ただし、2次方程式の重解は2つと数える。

2023神戸大学文系過去問
この動画を見る 

複素関数論③(複素数で表される図形) *16(1),(2) 高専数学

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$w=\dfrac{1}{Z-i}$
$Z \in $が次の条件をみたすとき,$w$はどんな図形?

(1)$ \vert Z \vert =\sqrt3 $
(2)$ \vert Z \vert=1$
この動画を見る 

大学入試問題#600「合同式使ってみた」 山梨大学医学部(2014) #整式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^{2014}$を$x^4+x^3+x^2+x+1$で割った余りを求めよ

出典:2014年山梨大学 入試問題
この動画を見る 

【高校数学】 数Ⅱ-34 解と係数の関係①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
2次方程式$ax^2+bx+c=0$の2つの解を$α,β$とすると、
$α+β=$①____,
$αβ=$②___,
$ax^2+bc+c=$③a(____)(____)

◎次の2次方程式の2つの解の和と積を求めよう。

①$x^2+3x-5=0$

②$-5x^2+x-2=0$

③$3x^2-9=0$

④$2x(3-x)=0$

⑤$\displaystyle \frac{4}{3}x^2-2x+\displaystyle \frac{5}{6}=0$
この動画を見る 

東京電機大 複素数のべき乗

アイキャッチ画像
単元: #複素数と方程式#複素数#指数関数#数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+2i)^n=x_n+y_ni$
(1)$x^2_n+y^2_n$を求めよ.
(2)$x_{n+2}$を$x_{n+1}$と$x_n$で表せ.
(3)$x_n$と$y_n$の最大公約数を求めよ.

東京電機大過去問
この動画を見る 
PAGE TOP