大学入試問題#161 大阪市立大学(1999) 定積分 - 質問解決D.B.(データベース)

大学入試問題#161 大阪市立大学(1999) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}(\displaystyle \frac{x\ \sin\ x}{1+\cos\ x}+\displaystyle \frac{x\ \cos\ x}{1+\sin\ x})dx$を計算せよ。

出典:1999年大阪市立大学 入試問題
チャプター:

04:30~ 解答のみ掲載 約10秒間隔

単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}(\displaystyle \frac{x\ \sin\ x}{1+\cos\ x}+\displaystyle \frac{x\ \cos\ x}{1+\sin\ x})dx$を計算せよ。

出典:1999年大阪市立大学 入試問題
投稿日:2022.04.06

<関連動画>

大学入試問題#450「計算の正確性のみを問う問題」 横浜国立大学(2006) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x^2\sin^3x\ dx$

出典:2006年横浜国立大学 入試問題
この動画を見る 

大学入試問題#95 横浜市立大学医学部(2013) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sqrt{ 2 }}{\sin\ x+\cos\ x}\ dx$を求めよ。

出典:2013年横浜市立大学医学部 入試問題
この動画を見る 

#40 数検1級1次 過去問 微分方程式

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$3y\displaystyle \frac{d^2y}{dx^2}+(\displaystyle \frac{dy}{dx})^2=0$において
$x=0$のとき$y=0$
$X=1$のとき$y=1$
を満たす特殊解を求めよ。
この動画を見る 

大学入試問題#78 横浜国立大学(2006) 置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{dx}{\sin^2x+3\cos^2x}$を計算せよ。

出典:2006年横浜国立大学 入試問題
この動画を見る 

大学入試問題#202 横浜国立大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\displaystyle \frac{\cos\ x}{\sin\ x})^4dx$

出典:横浜国立大学 入試問題
この動画を見る 
PAGE TOP