大学入試問題#655「解き方いろいろ」 千葉大学後期(2018) 整数問題 - 質問解決D.B.(データベース)

大学入試問題#655「解き方いろいろ」 千葉大学後期(2018) 整数問題

問題文全文(内容文):
$\displaystyle \frac{8a+8}{a^2+4a+12}$が整数となるような整数$a$をすべて求めよ

出典:2018年千葉大学 入試問題
チャプター:

00:00 問題紹介
06:48 作成した解答1
06:57 作成した解答2

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{8a+8}{a^2+4a+12}$が整数となるような整数$a$をすべて求めよ

出典:2018年千葉大学 入試問題
投稿日:2023.11.21

<関連動画>

大学入試問題#757「綺麗な基本問題」 東京理科大学(2001) #積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
関数$f(x)=1+\displaystyle \frac{1}{2}ce^{-x}$において、定数$c$は
$c=\displaystyle \int_{0}^{\frac{\pi}{2}} e^t f(t)\sin\ t\ dt$を満たす。
このとき、$c$の値を求めよ。

出典:2001年東京理科大学工学部 入試問題
この動画を見る 

福田の数学〜東京工業大学2022年理系第5問〜定積分と不等式と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aは$0 \lt a \leqq \frac{\pi}{4}$を満たす実数とし、
$f(x)=\frac{4}{3}\sin(\frac{\pi}{4}+ax)\cos(\frac{\pi}{4}-ax)$
とする。このとき、次の問いに答えよ。
(1)次の等式(*)を満たすaがただ1つ存在することを示せ。
(*)  $\int_0^1f(x)dx=1$
(2)$0 \leqq b \lt c \leqq 1$を満たす実数b,cについて、不等式
$f(b)(c-b) \leqq \int_b^cf(x)dx \leqq f(c)(c-b)$
が成り立つことを示せ。
(3)次の試行を考える。\\
[試行]n個の数$1,2,\ldots\ldots,n$を出目とする、あるルーレットをk回まわす。
この試行において、各$i=1,2,\ldots\ldots,n$についてiが出た回数を$S_{n,k,i}$とし、

(**)$\lim_{k \to \infty}\frac{S_{n,k,i}}{k}=\int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx$
が成り立つとする。このとき、(1)の等式(*)が成り立つことを示せ。
(4)(3)の[試行]において出た数の平均値を$A_{n,k}$とし、$A_n=\lim_{k \to \infty}A_{n,k}$とする。
(**)が成り立つとき、極限$\lim_{n \to \infty}\frac{A_n}{n}$をaを用いて表せ。

2022東京工業大学理系過去問
この動画を見る 

【高校数学】東京大学2024年の積分の問題をその場で解説しながら解いてみた!毎日積分92日目~47都道府県制覇への道~【㉟東京】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【東京大学 2024】
座標空間内に3点A(1,0,0),B(0,1,0),C(0,0,1)をとり、D を線分ACの中点とする。三角形ABDの周および内部をx軸のまわりに1回転させて得られる立体の体積を求めよ。
この動画を見る 

整数問題 千葉大(医)類題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$k,n$を
$k^2=3^n+360$
全て求めよ。

千葉大(医)過去問
この動画を見る 

大学入試問題#581「最後まで落ち着いて!」 東京帝国大学(1940) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{3x^2-3x+2}{x^3-3x^2+x-3} dx$

出典:1940年東京帝国大学 入試問題
この動画を見る 
PAGE TOP