#電気通信大学(2013) #極限 #Shorts - 質問解決D.B.(データベース)

#電気通信大学(2013) #極限 #Shorts

問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{3^{1-x}-1}{x-1}$

出典:2013年電気通信大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{3^{1-x}-1}{x-1}$

出典:2013年電気通信大学
投稿日:2024.06.01

<関連動画>

滋賀大 整式の累乗の微分 公式証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'84滋賀大学過去問題
$\frac{d}{dx} \{ f(x) \}^n=n \{ f(x) \}^{n-1}f'(x)$を証明せよ。
(f(x)は0でないxの整式、n自然数)
この動画を見る 

福田の数学〜東京大学2023年理系第1問〜定積分と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ [1]正の整数kに対し、$A_k=\displaystyle\int_{\sqrt{k\pi}}^{\sqrt{(k+1)\pi}}|\sin(x^2)|dx$ とおく。次の不等式が成り立つことを示せ。
$\displaystyle\frac{1}{\sqrt{(k+1)\pi}}$≦$A_k$≦$\displaystyle\frac{1}{\sqrt{k\pi}}$
[2]正の整数nに対し、$B_n$=$\displaystyle\frac{1}{\sqrt n}\int_{\sqrt{n\pi}}^{\sqrt{2n\pi}}|\sin(x^2)|dx$ とおく。
極限$\displaystyle\lim_{n \to \infty}B_n$ を求めよ。

2023東京大学理系過去問
この動画を見る 

大学入試問題#248 慶應義塾大学(2014) #方程式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x,y,z:0$でない整数
$\displaystyle \frac{1}{xy}+\displaystyle \frac{1}{yz}+\displaystyle \frac{1}{zx}=\displaystyle \frac{1}{xy+yz+zx}$
$2^{x+1}=\displaystyle \frac{5^{2y}}{10^{z+1}}$
をみたすとき$x,y,z$の値を求めよ。

出典:2014年慶應義塾大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第2問(1)〜指数対数不等式の表す領域の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#指数関数と対数関数#軌跡と領域#指数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
(1)次の連立不等式の表す領域の面積は$\dfrac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}$ である。
$\left\{\begin{array}{1}
\displaystyle\log_4y+\log_{\frac{1}{4}}(x-2)+\log_4\frac{1}{8-x} \geqq -1\\
2^{y+x^2+11} \leqq 1024^{x-1}\\
\end{array}\right.$

2021早稲田大学人間科学部過去問
この動画を見る 

範囲を考えろ!整数問題の入試問題【慶応義塾大学】【数学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ x^2+y^2<9,x^2\leqq y^2$を満たす整数の組$(x,y)$は全部で$\Box$個ある。

慶應義塾大過去問
この動画を見る 
PAGE TOP