#電気通信大学(2013) #極限 #Shorts - 質問解決D.B.(データベース)

#電気通信大学(2013) #極限 #Shorts

問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{3^{1-x}-1}{x-1}$

出典:2013年電気通信大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 1 } \displaystyle \frac{3^{1-x}-1}{x-1}$

出典:2013年電気通信大学
投稿日:2024.06.01

<関連動画>

大学入試問題#855「47の主張が強すぎる」 #自治医科大学(2012) #式変形

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$x^{\frac{1}{4}}+x^{-\frac{1}{4}}=3$のとき
$\displaystyle \frac{47}{2}(\displaystyle \frac{x^{\frac{3}{4}}+x^{-\frac{3}{4}}}{x+x^{-1}})$の値を求めよ。
$(0 \lt x:$実数$)$

出典:2012年自治医科大学
この動画を見る 

実数とは?  法政大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,cの値を求めよ(a,b,c:実数)
$a^2+b^2+c^2=2(-a+c-1)$

法政大学


この動画を見る 

福田の1.5倍速演習〜合格する重要問題046〜一橋大学2017年度文系第3問〜次数のわからない整式の決定問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
P(0)=1, P(x+1)-P(x)=2xを満たす整式P(x)を求めよ。

2017一橋大学文系過去問
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第1問〜異なるペアになる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)8人のメンバーで、2人組(ペア)を4組作る方法はn通りある。nを100で割った商は\\
\boxed{\ \ ア\ \ }で、余りは\boxed{\ \ イ\ \ }である。\\
\\
(2)8人のメンバーで、2人組(ペア)を4組作って、ある作業に取り組んだ後、同じ8人で\\
次の作業に取り組むペアを作るために、くじ引きをした。このとき、8人全員が\\
くじ引き前と異なるメンバーとペアになる確率は\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }} である。\\
ただし、くじは公平でどの2人もペアになる確率は等しいものとする。
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 

福田の数学〜北里大学2021年医学部第2問〜条件が複雑な重複順列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $n$ を正の整数とし、1,2,3,4,5,6の6個の数字から同じ数字を繰り返し用いることを許して$n$桁の整数をつくる。このような整数のうち、1が奇数個用いられるものの総数を$A_n$、それ以外のものの総数を$B_n$とする。
また、1か6がいずれも奇数個用いられるものの総数を$C_n$とする。次の問いに答えよ。
(1)$A_4$を求めよ。
(2)正の整数$n$に対して、$A_{n+1}$を$A_n$と$B_n$を用いて表せ。
(3)正の整数$n$に対して、$A_n$と$B_n$を求めよ。
(4)$p$を定数とする。$X_1=p$,$X_{n+1}=2X_n+6^n$($n$=1,2,3,...)で定められる
数列を$\left\{X_n\right\}$とする。正の整数$n$に対して、$X_n$を$n$と$p$を用いて表せ。
(5)正の整数$n$に対して、$C_n$を求めよ。

2021北里大学医学部過去問
この動画を見る 
PAGE TOP