福田のわかった数学〜高校2年生065〜三角関数(4)三角不等式の基礎 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生065〜三角関数(4)三角不等式の基礎

問題文全文(内容文):
数学$\textrm{II}$ 三角関数(4) 三角不等式の基礎
(1)$\sin\theta \gt -\frac{1}{2}$ (2)$\cos\theta \leqq \frac{\sqrt3}{2}$ (3)$\tan\theta \gt -1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(4) 三角不等式の基礎
(1)$\sin\theta \gt -\frac{1}{2}$ (2)$\cos\theta \leqq \frac{\sqrt3}{2}$ (3)$\tan\theta \gt -1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
投稿日:2021.10.10

<関連動画>

分数式

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\neq 0$であり,$x$は実数であるとする.
$\dfrac{x}{x^2+x+1}=a$
$\dfrac{x^2}{x^4+x^2+1}$の値を$a$で表せ.
この動画を見る 

【数Ⅱ】式と証明:恒等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式が$x$についての恒等式になるように,定数$a,b$の値を定めよ。

$\displaystyle \frac{4x+7}{(x-2)(2x+1)}=\displaystyle \frac{a}{x-2}+\displaystyle \frac{b}{2x+1}$
この動画を見る 

円周率πの2乗が無理数となる証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
円周率πの2乗が無理数となる証明に関して解説します.
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^4+x^2+1)^{101}$を$x^3-1$で割った余りを求めよ.
この動画を見る 

【数B】【数列】自然数の式の証明3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は自然数とする。
$6^n+4= (5+1)^n+4$と変形することで、$6^n+4$が$5$の倍数であることを、二項定理を利用して証明せよ。
この動画を見る 
PAGE TOP