福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数

問題文全文(内容文):
整数$\ a_1,\ a_2,\ a_3,\ \ldots$を、さいころをくり返し投げることにより、以下のように
定めていく。まず$a_1=1$とする。そして、正の整数$n$に対し、$a_{n+1}$の値を、n回目に
出たさいころの目に応じて、次の規則で定める。
$(\ 規則\ )$ n回目に出た目が1,2,3,4なら$a_{n+1}=a_n、5,6$なら$a_{n+1}=-a_n$
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、
$a_1=1,a_2=-1,a_3=-1,a_4=1$となる。
$a_n=1$となる確率を$p_n$とする。ただし、$p_1=1$とし、さいころのどの目も、
出る確率は$\frac{1}{6}$であるとする。
(1)$p_2,p_3$を求めよ。
(2)$p_{n+1}$を$p_n$を用いて表せ。
(3)$p_n \leqq 0.5000005$を満たす最小の正の整数nを求めよ。
ただし、$0.47 \lt \log_{10}3 \lt 0.48$であることを用いてよい。

2022筑波大学理系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師: 福田次郎
問題文全文(内容文):
整数$\ a_1,\ a_2,\ a_3,\ \ldots$を、さいころをくり返し投げることにより、以下のように
定めていく。まず$a_1=1$とする。そして、正の整数$n$に対し、$a_{n+1}$の値を、n回目に
出たさいころの目に応じて、次の規則で定める。
$(\ 規則\ )$ n回目に出た目が1,2,3,4なら$a_{n+1}=a_n、5,6$なら$a_{n+1}=-a_n$
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、
$a_1=1,a_2=-1,a_3=-1,a_4=1$となる。
$a_n=1$となる確率を$p_n$とする。ただし、$p_1=1$とし、さいころのどの目も、
出る確率は$\frac{1}{6}$であるとする。
(1)$p_2,p_3$を求めよ。
(2)$p_{n+1}$を$p_n$を用いて表せ。
(3)$p_n \leqq 0.5000005$を満たす最小の正の整数nを求めよ。
ただし、$0.47 \lt \log_{10}3 \lt 0.48$であることを用いてよい。

2022筑波大学理系過去問
投稿日:2022.05.26

<関連動画>

福田の数学〜東北大学2025理系第1問〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

原点を出発点として数直線上を動く点$P$がある。

試行(*)を次のように定める。


(*)

$1$枚の硬貨を$1$回投げて、
・表が出た場合は点$P$を正の向きに$1$だけ進める。
・裏が出た場合は$1$個のさいころを$1$回投げ、
 奇数の目が出た場合は点$P$を正の向きに$1$だけ進める
 偶数の目が出た場合は点$P$を負の向きに$2$だけ進める


ただし、硬貨を投げたとき裏表の出る確率は

それぞれ$\dfrac{1}{2}$,さいころを投げたとき

$1$から$6$までの整数の目の出る確率は

それぞれ$\dfrac{1}{6}$とする。

(1)試行(*)を$3$回繰り返した後に、

点$P$が原点に戻っている確率を求めよ。

(2)試行(*)を$6$回繰り返した後に、

点$P$が原点に戻っている確率を求めよ。

(3)$n$を$3$で割り切れない正の整数とする。

試行(*)を$n$回繰り返した後に、

点$P$が原点に戻っている確率を求めよ。

$2025$年東北大学理系過去問題
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(1)〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)(a)1個のさいころを4回続けて投げるとき、4回とも同じ目が出る確率は
$\displaystyle\frac{1}{\boxed{\ \ アイウ\ \ }}$であり、3, 4, 5, 6の目がそれぞれ1回ずつ出る確率は$\displaystyle\frac{1}{\boxed{\ \ エオ\ \ }}$である。
(b)1個のさいころを4回続けて投げて、出た目を順に左から並べて4桁の整数Nを作る。例えば、1回目に2、2回目に6、3回目に1、4回目に2の目がでた場合はN=2612である。Nが偶数となる確率は$\displaystyle\frac{1}{\boxed{\ \ カ\ \ }}$であり、N≧2023 となる確率は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であり、N≧5555 となる確率は$\displaystyle\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシス\ \ }}$である。
この動画を見る 

18兵庫県教員採用試験(数学:1-1 確率)

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#確率
指導講師: ますただ
問題文全文(内容文):
1⃣-(1)
赤5コ、白7コが入った袋がある。
(1)同時に2コとるとき、玉の色が異なる確率を求めよ。
(2)1コとって、袋にもどさず2コ目をとる。
2コ目が白のとき、1コ目も白の確率を求めよ。
この動画を見る 

場合の数

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n,x,y,z$は0以上の整数である.
$2x+y+z=n$を満たす$(x,y,z)$は何組あるか.

この動画を見る 

【高校数学】重複を許して取る組合せ~公式を意識しないで解く~ 1-12【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【数学A】重複を許して取る組合せ
この動画を見る 
PAGE TOP