福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数

問題文全文(内容文):
整数$\ a_1,\ a_2,\ a_3,\ \ldots$を、さいころをくり返し投げることにより、以下のように
定めていく。まず$a_1=1$とする。そして、正の整数$n$に対し、$a_{n+1}$の値を、n回目に
出たさいころの目に応じて、次の規則で定める。
$(\ 規則\ )$ n回目に出た目が1,2,3,4なら$a_{n+1}=a_n、5,6$なら$a_{n+1}=-a_n$
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、
$a_1=1,a_2=-1,a_3=-1,a_4=1$となる。
$a_n=1$となる確率を$p_n$とする。ただし、$p_1=1$とし、さいころのどの目も、
出る確率は$\frac{1}{6}$であるとする。
(1)$p_2,p_3$を求めよ。
(2)$p_{n+1}$を$p_n$を用いて表せ。
(3)$p_n \leqq 0.5000005$を満たす最小の正の整数nを求めよ。
ただし、$0.47 \lt \log_{10}3 \lt 0.48$であることを用いてよい。

2022筑波大学理系過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師: 福田次郎
問題文全文(内容文):
整数$\ a_1,\ a_2,\ a_3,\ \ldots$を、さいころをくり返し投げることにより、以下のように
定めていく。まず$a_1=1$とする。そして、正の整数$n$に対し、$a_{n+1}$の値を、n回目に
出たさいころの目に応じて、次の規則で定める。
$(\ 規則\ )$ n回目に出た目が1,2,3,4なら$a_{n+1}=a_n、5,6$なら$a_{n+1}=-a_n$
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、
$a_1=1,a_2=-1,a_3=-1,a_4=1$となる。
$a_n=1$となる確率を$p_n$とする。ただし、$p_1=1$とし、さいころのどの目も、
出る確率は$\frac{1}{6}$であるとする。
(1)$p_2,p_3$を求めよ。
(2)$p_{n+1}$を$p_n$を用いて表せ。
(3)$p_n \leqq 0.5000005$を満たす最小の正の整数nを求めよ。
ただし、$0.47 \lt \log_{10}3 \lt 0.48$であることを用いてよい。

2022筑波大学理系過去問
投稿日:2022.05.26

<関連動画>

【数A】【場合の数と確率】塗分け ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
・色の異なる7個の玉をつないで首飾りにする方法は何通りあるか。
・正三角柱の5つの面を青、白、赤、黄、緑の5色すべてを使って塗分ける方法は何通りあるか。
この動画を見る 

福田の数学〜立教大学2025経済学部第1問(2)〜順列と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)赤玉$3$個と白玉$4$個を無作為に$1$列に

並べるとき、

白玉が両端にある確率は$\boxed{イ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

【数A】【場合の数と確率】期待値、このゲームは得?損? ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
白玉2個、黒玉5個、赤玉3個が入っている袋から玉を1個取り出し、白玉が出たら1000円、黒玉が出たら100円もらえ、赤玉が出たら800円を支払うゲームがある。ゲームの参加料が0円であるとき、このゲームに参加することは得であるといえるか。
この動画を見る 

【数学】確率 反復試行~「同時」「順番」の違いとは?

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】確率 反復試行「同時」「順番」の違い解説動画です
-----------------
(1)3個のサイコロを同時に投げるとき、出る目の最小値が4である確実は?

(2)3個のサイコロを順番に投げるとき、出る目の最小値が4である確率は?
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(4)〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)大小2個のさいころを同時に投げる。大きいサイコロのでた目を$a$、小さいサイコロのでた目を$b$とするとき、$\displaystyle\frac{a}{b}$が整数になる確率は$\boxed{\ \ エ\ \ }$である。
この動画を見る 
PAGE TOP