問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 整数\ a_1,\ a_2,\ a_3,\ \ldotsを、さいころをくり返し投げることにより、以下のように\\
定めていく。まずa_1=1とする。そして、正の整数nに対し、a_{n+1}の値を、n回目に\\
出たさいころの目に応じて、次の規則で定める。\\
(\ 規則\ ) n回目に出た目が1,2,3,4ならa_{n+1}=a_n、5,6ならa_{n+1}=-a_n\\
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、\\
a_1=1,a_2=-1,a_3=-1,a_4=1となる。\\
a_n=1となる確率をp_nとする。ただし、p_1=1とし、さいころのどの目も、\\
出る確率は\frac{1}{6}であるとする。\\
(1)p_2,p_3を求めよ。\\
(2)p_{n+1}をp_nを用いて表せ。\\
(3)p_n \leqq 0.5000005を満たす最小の正の整数nを求めよ。\\
ただし、0.47 \lt \log_{10}3 \lt 0.48であることを用いてよい。\\
\end{eqnarray}
2022筑波大学理系過去問
\begin{eqnarray}
{\Large\boxed{2}}\ 整数\ a_1,\ a_2,\ a_3,\ \ldotsを、さいころをくり返し投げることにより、以下のように\\
定めていく。まずa_1=1とする。そして、正の整数nに対し、a_{n+1}の値を、n回目に\\
出たさいころの目に応じて、次の規則で定める。\\
(\ 規則\ ) n回目に出た目が1,2,3,4ならa_{n+1}=a_n、5,6ならa_{n+1}=-a_n\\
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、\\
a_1=1,a_2=-1,a_3=-1,a_4=1となる。\\
a_n=1となる確率をp_nとする。ただし、p_1=1とし、さいころのどの目も、\\
出る確率は\frac{1}{6}であるとする。\\
(1)p_2,p_3を求めよ。\\
(2)p_{n+1}をp_nを用いて表せ。\\
(3)p_n \leqq 0.5000005を満たす最小の正の整数nを求めよ。\\
ただし、0.47 \lt \log_{10}3 \lt 0.48であることを用いてよい。\\
\end{eqnarray}
2022筑波大学理系過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 整数\ a_1,\ a_2,\ a_3,\ \ldotsを、さいころをくり返し投げることにより、以下のように\\
定めていく。まずa_1=1とする。そして、正の整数nに対し、a_{n+1}の値を、n回目に\\
出たさいころの目に応じて、次の規則で定める。\\
(\ 規則\ ) n回目に出た目が1,2,3,4ならa_{n+1}=a_n、5,6ならa_{n+1}=-a_n\\
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、\\
a_1=1,a_2=-1,a_3=-1,a_4=1となる。\\
a_n=1となる確率をp_nとする。ただし、p_1=1とし、さいころのどの目も、\\
出る確率は\frac{1}{6}であるとする。\\
(1)p_2,p_3を求めよ。\\
(2)p_{n+1}をp_nを用いて表せ。\\
(3)p_n \leqq 0.5000005を満たす最小の正の整数nを求めよ。\\
ただし、0.47 \lt \log_{10}3 \lt 0.48であることを用いてよい。\\
\end{eqnarray}
2022筑波大学理系過去問
\begin{eqnarray}
{\Large\boxed{2}}\ 整数\ a_1,\ a_2,\ a_3,\ \ldotsを、さいころをくり返し投げることにより、以下のように\\
定めていく。まずa_1=1とする。そして、正の整数nに対し、a_{n+1}の値を、n回目に\\
出たさいころの目に応じて、次の規則で定める。\\
(\ 規則\ ) n回目に出た目が1,2,3,4ならa_{n+1}=a_n、5,6ならa_{n+1}=-a_n\\
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、\\
a_1=1,a_2=-1,a_3=-1,a_4=1となる。\\
a_n=1となる確率をp_nとする。ただし、p_1=1とし、さいころのどの目も、\\
出る確率は\frac{1}{6}であるとする。\\
(1)p_2,p_3を求めよ。\\
(2)p_{n+1}をp_nを用いて表せ。\\
(3)p_n \leqq 0.5000005を満たす最小の正の整数nを求めよ。\\
ただし、0.47 \lt \log_{10}3 \lt 0.48であることを用いてよい。\\
\end{eqnarray}
2022筑波大学理系過去問
投稿日:2022.05.26