大学入試問題#833「計算力大事!」 #筑波大学(2023) #定積分 - 質問解決D.B.(データベース)

大学入試問題#833「計算力大事!」 #筑波大学(2023) #定積分

問題文全文(内容文):
関数$f(x)$の導関数$g(x)$は定数$k( \neq 0)$を用いて次式で与えられる。
$g(x)=\displaystyle \frac{e^{kx}-e^{kx}}{2}$

次の問いに答えよ。
1.$f(0)=0$であるとき$f(x)$を求めよ。
2.$p$は定数とする。
  $\displaystyle \int_{0}^{p} \displaystyle \frac{1}{\sqrt{ 1+\{g(x)\} }}g'(x) \ dx$を求めよ

出典:2023年筑波大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
関数$f(x)$の導関数$g(x)$は定数$k( \neq 0)$を用いて次式で与えられる。
$g(x)=\displaystyle \frac{e^{kx}-e^{kx}}{2}$

次の問いに答えよ。
1.$f(0)=0$であるとき$f(x)$を求めよ。
2.$p$は定数とする。
  $\displaystyle \int_{0}^{p} \displaystyle \frac{1}{\sqrt{ 1+\{g(x)\} }}g'(x) \ dx$を求めよ

出典:2023年筑波大学 入試問題
投稿日:2024.05.30

<関連動画>

大学入試問題#149 岩手大学(2019) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3}\displaystyle \frac{x}{(4-x)^3}\ dx$を計算せよ。

出典:2019年岩手大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第2問(2)〜3辺の長さから三角形の面積を求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
(2)3辺の長さがそれぞれ$5,16,19$の三角形の面積は$\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}$である。

2021早稲田大学人間科学部過去問
この動画を見る 

数学「大学入試良問集」【12−5 3次関数と接線】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3次曲線$C:y=x^3-4x$とその上の点$P(2,0)$について考える
点$P$で曲線$C$に接する直線が曲線$C$と交わる点を$Q$とする。
また$R$は、$P$と異なる曲線$C$上の点であって、そして直線$PR$は曲線$C$に点$R$で接するものとする。
このとき、次の各問いに答えよ。
(1)点$Q$の$x$座標を求めよ。
(2)点$R$の$x$座標を求めよ。
(3)直線$PR$と曲線$C$で囲まれた部分の面積を求めよ。
この動画を見る 

京大らしさ全開の不朽の名作 京都帝国大学1937 大学入試問題#932

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \dfrac{dx}{(x^2-1)^2}$を解け.

1937京都帝国大学過去問題
この動画を見る 

大学入試問題#450「計算の正確性のみを問う問題」 横浜国立大学(2006) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x^2\sin^3x\ dx$

出典:2006年横浜国立大学 入試問題
この動画を見る 
PAGE TOP