大学入試問題#833「計算力大事!」 #筑波大学(2023) #定積分 - 質問解決D.B.(データベース)

大学入試問題#833「計算力大事!」 #筑波大学(2023) #定積分

問題文全文(内容文):
関数$f(x)$の導関数$g(x)$は定数$k( \neq 0)$を用いて次式で与えられる。
$g(x)=\displaystyle \frac{e^{kx}-e^{kx}}{2}$

次の問いに答えよ。
1.$f(0)=0$であるとき$f(x)$を求めよ。
2.$p$は定数とする。
  $\displaystyle \int_{0}^{p} \displaystyle \frac{1}{\sqrt{ 1+\{g(x)\} }}g'(x) \ dx$を求めよ

出典:2023年筑波大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
関数$f(x)$の導関数$g(x)$は定数$k( \neq 0)$を用いて次式で与えられる。
$g(x)=\displaystyle \frac{e^{kx}-e^{kx}}{2}$

次の問いに答えよ。
1.$f(0)=0$であるとき$f(x)$を求めよ。
2.$p$は定数とする。
  $\displaystyle \int_{0}^{p} \displaystyle \frac{1}{\sqrt{ 1+\{g(x)\} }}g'(x) \ dx$を求めよ

出典:2023年筑波大学 入試問題
投稿日:2024.05.30

<関連動画>

福田の数学〜九州大学2023年文系第4問PART1〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

大学入試問題#279 電気通信大学(2012) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\cos\frac{\pi}{7}}\displaystyle \frac{dx}{\sqrt{ 1-x^2 }}$

出典:2012年電気通信大学後期 入試問題
この動画を見る 

ちょっと工夫した 因数分解 9991を素因数分解(慶應女子高)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
9991を素因数分解せよ.

慶應女子高過去問
この動画を見る 

数学「大学入試良問集」【18−9 定積分関数と微分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{-x}^{x+4}\displaystyle \frac{t}{t^2+1}dt$について、次の各問いに答えよ。
(1)$f(x)=0$となる$x$の値を求めよ。
(2)$f'(x)=0$となる$x$の値を求めよ。
(3)$f(x)$が最小値をもつことを示し、その最小値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(3)〜アポロニウスの円と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)$xy$平面上において、点Pは2点$A(0,0),\ B(7,0)$に対して$AP:BP=3:4$
を満たす。
$(\textrm{i})$点Pの軌跡の方程式は$\boxed{\ \ エ\ \ }$である。
$(\textrm{ii})$点Pの軌跡を境界線とする2つの領域のうち、点Aを含む領域と、
不等式$y \leqq \sqrt3|x+9|$の表す領域の共通部分の面積は$\boxed{\ \ オ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP