【数A】【整数の性質】ユークリッドの互除法最大公約数を考える問題 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数A】【整数の性質】ユークリッドの互除法最大公約数を考える問題 ※問題文は概要欄

問題文全文(内容文):
次の条件を満たす自然数nをすべて求めよ。
(1)14n+52と4n+17の最大公約数が5になるような50以下のn
(2)11n+39と6n+20の最大公約数が7になるような100以下のn

nは自然数とする。n²+7n+36とn+5の最大公約数として考えられる数をすべて求めよ。
チャプター:

0:00 1解説
4:22 2解説
8:30 エンディング

単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす自然数nをすべて求めよ。
(1)14n+52と4n+17の最大公約数が5になるような50以下のn
(2)11n+39と6n+20の最大公約数が7になるような100以下のn

nは自然数とする。n²+7n+36とn+5の最大公約数として考えられる数をすべて求めよ。
投稿日:2025.01.24

<関連動画>

【数学】イッパツ理解!確率の「P」と「C」の使い分け!~全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
イッパツ理解!
数学の「確率の「P」と「C」の使い分け」についてお話しています。
この動画を見る 

ルートが入ってる方程式 日大三

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#ユークリッド互除法と不定方程式・N進法#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$\sqrt 2 x = \frac{1}{\sqrt 2} - \frac{1}{\sqrt 3}$

日本大学第三高等学校
この動画を見る 

座標平面上の角の二等分線

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
y=3nx
y=nx
*図は動画内参照
n=? (n>0)

慶應義塾高等学校
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年IA第5問〜平面幾何

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、$AB=3$, $BC=4$, $AC=5$とする。
$\angle BAC$の二等分線と辺$BC$との交点を$D$とすると
$BD=\displaystyle \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$, $AD=\displaystyle \frac{\boxed{\ \ ウ\ \ }\sqrt{\boxed{\ \ エ\ \ }}}{\boxed{\ \ オ\ \ }}$
である。
また、$\angle BAC$の二等分線と$\triangle ABC$の外接円$O$との交点で点$A$とは異なる
点を$E$とする。$\triangle AEC$に着目すると
$AE=\boxed{\ \ カ\ \ }\sqrt{\boxed{\ \ キ\ \ }}$
である。
$\triangle ABC$の2辺$AB$と$AC$の両方に接し、外接円$O$に内接する円の中心を
$P$とする。円$P$の半径を$r$とする。さらに、円$P$と外接円$O$との接点を
$F$とし、直線$PF$と外接円$O$との交点で点$F$とは異なる点を$G$とする。
このとき
$AP=\sqrt{\boxed{\ \ ク\ \ }}\ r$, $PG=\boxed{\ \ ケ\ \ }-r$
と表せる。したがって、方べきの定理により$r=\displaystyle \frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。

$\triangle ABC$の内心を$Q$とする。内接円$Q$の半径は$\boxed{\ \ シ\ \ }$で、$AQ=\sqrt{\boxed{\ \ ス\ \ }}$
である。また、円$P$と辺$AB$との接点を$H$とすると、$AH=\displaystyle \frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }}$である。
以上から、点$H$に関する次の$(\textrm{a}),(\textrm{b})$の正誤の組合せとして正しいもの
は$\boxed{\boxed{\ \ タ\ \ }}$である。


$(\textrm{a})$点$H$は3点$B,D,Q$を通る円の周上にある。
$(\textrm{b})$点$H$は3点$B,E,Q$を通る円の周上にある。

$\boxed{\boxed{\ \ タ\ \ }}$の解答群
(※選択肢は動画参照)

2021共通テスト過去問
この動画を見る 

東大留年女子もっちゃんとオイラーの公式を学ぶ!最終章

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
$e=\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$

$e^{i \pi}=-1$
この動画を見る 
PAGE TOP