福田の数学〜京都大学2025理系第5問〜媒介変数表示で表された曲線 - 質問解決D.B.(データベース)

福田の数学〜京都大学2025理系第5問〜媒介変数表示で表された曲線

問題文全文(内容文):

$\boxed{5}$

$\theta$は実数とする。

$xyz$空間の$2$点

$A\left(0,0,\dfrac{\sqrt2}{4}\right),P\left(\cos\theta,\sin\theta,\dfrac{1}{2}\cos\theta\right)$を

通る直線$AP$が$xy$平面と交わるとき、

その交点を$Q$とする。

$\theta$が$-\dfrac{\pi}{4}\lt \theta \lt \dfrac{\pi}{4}$の範囲を動くときの

点$Q$の軌跡を求め、その軌跡を$xy$平面上に図示せよ。

$2025$年京都大学理系過去問題
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$\theta$は実数とする。

$xyz$空間の$2$点

$A\left(0,0,\dfrac{\sqrt2}{4}\right),P\left(\cos\theta,\sin\theta,\dfrac{1}{2}\cos\theta\right)$を

通る直線$AP$が$xy$平面と交わるとき、

その交点を$Q$とする。

$\theta$が$-\dfrac{\pi}{4}\lt \theta \lt \dfrac{\pi}{4}$の範囲を動くときの

点$Q$の軌跡を求め、その軌跡を$xy$平面上に図示せよ。

$2025$年京都大学理系過去問題
投稿日:2025.03.13

<関連動画>

福田のわかった数学〜高校2年生042〜軌跡(9)媒介変数表示の軌跡(2)

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#図形と方程式#軌跡と領域#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 軌跡(9) 媒介変数表示(2)
tが実数値をとって変化するとき、
$x=\frac{t^2-1}{t^2+1} y=\frac{2t}{t^2+1}$
はどんな曲線を表すか。
この動画を見る 

【数C】【平面上の曲線】中心の極座標が(a,0)で極Oを通る円をCとし、極Oを除くC上の動点をPとする。線分OPを1辺とする正方形OPQRを作るとき、点Qの軌跡の極方程式を求めよ。

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。中心の極座標が(a,0)で極Oを通る円をCとし、極Oを除くC上の動点をPとする。線分OPを1辺とする正方形OPQRを作るとき、点Qの軌跡の極方程式を求めよ。
この動画を見る 

高専数学 微積I #242(1) 媒介変数表示曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
曲線$x=t^3,y=3t^2(0\leqq t\leqq 1)$の
長さ$\ell$を求めよ.
この動画を見る 

【高校数学】数Ⅲ-43 曲線の媒介変数表示④

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x、y$が$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$を満たす実数のとき、
$2x^2+xy+y^2$の最大値、最小値を求めよ。
この動画を見る 

【高校数学】数Ⅲ-111 接線と法線④(媒介変数表示編)

アイキャッチ画像
単元: #平面上の曲線#微分とその応用#接線と法線・平均値の定理#媒介変数表示と極座標#数学(高校生)#数C#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の媒介変数で表された曲線において、
()内に示された曲線上の点における接線の方程式を求めよ。

①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=2\cos\theta \\
y=\sin\theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{3}\right)$

②①$\begin{eqnarray}
\left\{
\begin{array}{l}
x=\cos^3 \theta \\
y=\sin^3 \theta
\end{array}
\right.
\end{eqnarray}$$\quad \left(\theta=\dfrac{\pi}{4}\right)$
この動画を見る 
PAGE TOP