中2数学「単項式と多項式・次数」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「単項式と多項式・次数」【毎日配信】

問題文全文(内容文):
例1
次の式を単項式と多項式に分けなさい.

ア.$-3x$
イ.$3a-4$
ウ.$a^2+2a+1$
エ.$-\dfrac{1}{2}m^3$
オ.$\dfrac{x^2-1}{4}$

単項式→
多項式→

例2
多項式$\dfrac{1}{4}x^2-x+1$の項を答えなさい.
また文字を含む項の係数を答えなさい.

項→
係数→

例3
次の式は何次式ですか.

(1)$2a^2$
(2)$4x^2y$
(3)$-5ab^3$
(4)$4x-xy$
(5)$x^2y^2-2xy-3y$
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の式を単項式と多項式に分けなさい.

ア.$-3x$
イ.$3a-4$
ウ.$a^2+2a+1$
エ.$-\dfrac{1}{2}m^3$
オ.$\dfrac{x^2-1}{4}$

単項式→
多項式→

例2
多項式$\dfrac{1}{4}x^2-x+1$の項を答えなさい.
また文字を含む項の係数を答えなさい.

項→
係数→

例3
次の式は何次式ですか.

(1)$2a^2$
(2)$4x^2y$
(3)$-5ab^3$
(4)$4x-xy$
(5)$x^2y^2-2xy-3y$
投稿日:2021.05.03

<関連動画>

明治学院 令和4年度 2022 入試問題100題解説84問目!

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$0.65^2-2 \times 0.65 \times 0.25 + 0.25^2$

2022明治学院高等学校
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

帯分数登場!!

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$999 \frac{998}{999} \times 999 = ?$
この動画を見る 

【高校受験対策】数学-死守12

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の問いに答えよ.

①$5 \times (-4)^2 -3^2$を計算せよ.

②$\dfrac{5x-3y}{3}-\dfrac{3x-7y}{4}$を計算せよ.

③$\sqrt{27}-\dfrac{12}{\sqrt 3}-\sqrt{75}$を計算せよ.

④$x=\sqrt7+2,y=\sqrt7-2$のとき,
$x^2-y^2$の値を求めよ.

⑤方程式$2x+3y+6=0$のグラフをかけ.

⑥2次方程式$(x-2)^2=6$を解け.

⑦$1,2,4,8,16,32$の数が書かれた棒が1本ずつ入っている箱がある.
この箱から棒を同時に2本取り出すとき,
2本の棒に書かれている数の和が3の倍数となる確率を求めよ.
ただし,どの棒の取り出し方も同様に確からしいものとする.

⑧箱の中に白い玉だけがたくさん入っている.
この箱に赤い玉を80個入れてよくかき混ぜ,箱から50個の玉を無作為に取り出すと,
赤い玉が9個含まれていた.
最初に箱の中に入っていた白い玉はおよそ何個であると推測されるか,
次の(ア)~(エ)から1つ選べ.

(ア)およそ320個
(イ)およそ360個
(ウ)およそ400個
(エ)およそ440個

図は動画内を参照
この動画を見る 

【高校受験対策/数学】死守-79

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守79

①$-3-(-7)$を計算しなさい。

②$8a^3b^5÷4a^2b^3$を計算しなさい。

③$x^2-8x+16$を因数分解しなさい。

④$a=\frac{2b-c}{5}$を$c$について解きなさい。

⑤二次方程式$x^2+5x+2=0$を解きなさい。

⑥$a=2$、$b=-3$のとき、$a+b^2$の値を求めなさい。

⑦次の文の( )に当てはまる条件として最も適切なものを、ア~エから1つ選んで記号で答えなさい。

平行四辺形$ABCD$に、( )の条件が加わると、平行四辺形$ABCD$は長方形になる。

ア $AB=BC$
イ $AC\perp BD$
ウ $AC=BD$
エ $\angle ABD=\angle CBD$

⑧$A$地点から$B$地点まで、初めは毎分$60m$で$am$歩き、途中から毎分$100m$で$bm$走ったところ、$20$分以内で$B$地点に到着した。この数量の関係を不等式で表しなさい。

⑨次のア~エのうちから、内容が正しいものを1つ選んで記号で答えなさい。

ア $9$の平方根は$3$と$-3$である。
イ $\sqrt{16}$を根号を使わずに表すと$\pm 4$である。
ウ $\sqrt{5}+\sqrt{7}$と$\sqrt{5+7}$は同じ値である。
エ $(\sqrt{2}+\sqrt{6})^2$と$(\sqrt{2})^2+(\sqrt{6})^2$は同じ値である。
この動画を見る 
PAGE TOP