【数B】確率分布:<分散の計算に注意!>2つの確率変数の和の期待値・分散 - 質問解決D.B.(データベース)

【数B】確率分布:<分散の計算に注意!>2つの確率変数の和の期待値・分散

問題文全文(内容文):
(2つの確率の和の期待値・分散の求め方と例)
赤のコイン2枚投げて表の出た枚数をX,青のコイン1枚投げて表の出た枚数をYとするとき、X+Yの期待値・分散を求めよう
チャプター:

0:00 「独立」とは?
0:47 確率分布表
1:30 期待値計算
2:15 分散計算

単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(2つの確率の和の期待値・分散の求め方と例)
赤のコイン2枚投げて表の出た枚数をX,青のコイン1枚投げて表の出た枚数をYとするとき、X+Yの期待値・分散を求めよう
投稿日:2021.07.14

<関連動画>

【数B】正規分布表を用いて確率を求めよう!~標準化の計算

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題(青チャートより抜粋)ある生物の体長が$N(50,3^2)$の正規分布に従っている。
(1)$P(47\leqq X\leqq 56)$
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第3問〜最後の目が得点になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#確率分布と統計的な推測#確率分布#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
各頂点に1から4までの数が1つずつ書いてあり、振るとそれらの1つが等し
い確率で得られる正四面体の形のさいころTがある。これを用いて、2人のプレイ
ヤA, B が以下のようなゲームをする。それぞれの枠内に記したルールに従い、各
プレイヤがTを1回以上振って、最後に出た数をそのプレイヤの得点とし、得点の
多い方を勝ちとする。ここで、同点のときには常にBの勝ちとする。また、振り直
すかどうかは、各プレイヤーとも自分が勝つ確率を最大にするように選択するとす
る。このとき、Aが勝つ確率pについて答えよ。ただし、以下のそれぞれの場合に
ついて、pは0以上の整数k, nを用いて$p =\frac{2k+1}{2^n}$と表せるので、このk, nを
答えよ。
(1)$A, B$がそれぞれ1回ずつTを振る
このときpを表すk, nは、$k=\boxed{ケ} ,\ n=\boxed{コ}$である。

(2)先にAが一回振る。次にBが2回まで振ってよい(Aの得点を知っている状
況で、1回振り直してよい)
このときpを表すk,nは、$k=\boxed{サ} ,\ n=\boxed{シ}$である。

(3)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直
してよい)。次にBが1回振る。
このときpを表すk,nは、$k=\boxed{ス} ,\ n=\boxed{セ }$である。

(4)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直
してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、1回
振り直してよい)
このときpを表すk,nは、$k=\boxed{ソ} ,\ n=\boxed{タ}$である。

(5)先にAが3回まで振ってよい(Bの得点がまだわからない状況で、2回まで振
り直してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、
1回振り直してよい)
このときpを表すk,nは、$k=\boxed{チ} ,\ n=\boxed{ツ}$である。

2022上智大学理系過去問
この動画を見る 

【数B】確率分布:正規分布表を用いて確率を求めよう!~標本平均編(実際に計算してみよう)

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
ある生物の体長が$N(50,3^2)$に従っている。このとき、大きさ4の標本の標本平均をYとし、$P(Y\geqq 53)$を求めよ。
この動画を見る 

【数B】確率分布:変量の変換公式 こう覚えておけばOK!

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
XからYに確率変数を$Y=aX+b$で変換する場合の期待値、分散、標準偏差の公式
この動画を見る 

【高校数学】模試に向けて今からでも間に合う!統計的な推測 2週間完成【③二項分布】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・次の二項分布の平均、分散と標準偏差を求めよ。
$\displaystyle B(5,\frac{1}{6})$
・1個のさいころを8回投げるとき、4以上の目が出る回数をXとする。
(1) 4以上の目が3回以上出る確率を求めよ。
(2) 確率変数Xの期待値と標準偏差を求めよ。
この動画を見る 
PAGE TOP