298 ユークリッドの互除法2:余りを計算して効率的に最大公約数を求めよう! #shorts - 質問解決D.B.(データベース)

298 ユークリッドの互除法2:余りを計算して効率的に最大公約数を求めよう! #shorts

問題文全文(内容文):
298 ユークリッドの互除法2:余りを計算して効率的に最大公約数を求めよう! #shorts
【問題文】
このプログラムは次の2つの性質を使って最大公約数を求めるものである。
性質1)xをyで割ったあまりが0のとき、xとyの最大公約数はyである。
性質2)xをyで割ったあまりが0と異なるとき、xとyの最大公約数はyとxをyでわったあまりの最大公約数に等しい。
空欄に入る最も適切なものを選べ。
単元: #数A#情報Ⅰ(高校生)#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)#プログラミング#プログラムによる動的シミュレーション
指導講師: めいちゃんねる
問題文全文(内容文):
298 ユークリッドの互除法2:余りを計算して効率的に最大公約数を求めよう! #shorts
【問題文】
このプログラムは次の2つの性質を使って最大公約数を求めるものである。
性質1)xをyで割ったあまりが0のとき、xとyの最大公約数はyである。
性質2)xをyで割ったあまりが0と異なるとき、xとyの最大公約数はyとxをyでわったあまりの最大公約数に等しい。
空欄に入る最も適切なものを選べ。
投稿日:2024.07.18

<関連動画>

福田の共通テスト解答速報〜2022年共通テスト数学IA問題4。整数解の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第4問 
(1)54=62524で割った時の余りは1に等しい。このことを用いると、不定方程式

54x24y=1 
の整数解のうち、xが正の整数で最小になるのはx=    ,y=    であることがわかる。
また、①の整数解のうち、xが2桁の正の整数で最小になるのは
x=    , y=    である。

(2)次に、625255で割った時の余りと、25で割った時の余りについて考えてみよう。
まず、
6252=5
であり、またm=    とすると、6252=2 m2+2 m+1である。
これらにより、625255で割った時の余りと、25で割った時の余りがわかる。

(3)(2)の考察は、不定方程式
55x25y=1 
の整数解を調べるために利用できる。x,yを②の整数解とする。
55x55の倍数であり、25で割った時の余りは1となる。よって(2)により、
55x625255でも25でも割り切れる。5525は互いに素なので
55x62525525の倍数である。このことから、②の整数解のうち、
xが3桁の正の整数で最小になるのは
x=    , y=    
であることが分かる。

(4)11424で割った時の余りは1に等しい。不定方程式
115x25y=1
の整数解のうち、xが正の整数で最小になるのは
x=    , y=     である。

2022共通テスト数学過去問
この動画を見る 

最短経路 他の問題もあり

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
最短経路
AからBまで最短距離で行く。
(1)全部で何通り?
(2)Dを通らない場合は何通り?
(3)Eを通らない場合は何通り?
(4)CもDも通る場合は何通り?
(5)CもDも通らない場合は何通り?
この動画を見る 

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の整数m,nが不等式
nm2n+1をみたす。以下を示す。
(1)m24n=0or1
(2)mn+mm+1
この動画を見る 

自作の整数問題 効率よく絞り込め

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
k,nを自然数とする.
493n=k2+9152
自然数(k,n)の組をすべて求めよ.
この動画を見る 

慶應義塾大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,y自然数
x2+5y2=2016

出典:慶應義塾 過去問
この動画を見る 
PAGE TOP preload imagepreload image