必要条件と十分条件②【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

必要条件と十分条件②【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
全体集合$U$について、その部分集合を$A,B,C$とする。
ただし、$A,B,C$はいずれも空集合ではない。
集合$A,B,C$が次の式を満たすとき、次の問いに答えよ。
$A \cap B \neq \varnothing,\ B \cap C=\varnothing,\ \overline{ A }\cap C=\varnothing$
(1)$x \in \overline{ C }$であることは、$x \in B$であるための[ア]
(2)$x \in C$であることは、$x \in A$であるための[イ]
(3)$x \in A \cap \overline{ C }$であることは、$x \in A \cap B$であるための[ウ]

⓪必要十分条件
①必要条件であるが、十分条件でない
②十分条件であるが、必要条件でない
③必要条件でも十分条件でもない



実数$x$に対する条件$p,q,r$を次のように定める。
$p:x$は無理数
$q:x+\sqrt{ 28 }$は有理数
$r:\sqrt{ 28 }x$は有理数
次の[ア]、[イ]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返し選んでもよい。
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
全体集合$U$について、その部分集合を$A,B,C$とする。
ただし、$A,B,C$はいずれも空集合ではない。
集合$A,B,C$が次の式を満たすとき、次の問いに答えよ。
$A \cap B \neq \varnothing,\ B \cap C=\varnothing,\ \overline{ A }\cap C=\varnothing$
(1)$x \in \overline{ C }$であることは、$x \in B$であるための[ア]
(2)$x \in C$であることは、$x \in A$であるための[イ]
(3)$x \in A \cap \overline{ C }$であることは、$x \in A \cap B$であるための[ウ]

⓪必要十分条件
①必要条件であるが、十分条件でない
②十分条件であるが、必要条件でない
③必要条件でも十分条件でもない



実数$x$に対する条件$p,q,r$を次のように定める。
$p:x$は無理数
$q:x+\sqrt{ 28 }$は有理数
$r:\sqrt{ 28 }x$は有理数
次の[ア]、[イ]に当てはまるものを下の⓪~③の中から選べ。
ただし、同じものを繰り返し選んでもよい。
投稿日:2020.11.03

<関連動画>

綺麗な問題。それしかないことを示すのが肝

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#整数の性質#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数nを求めよ
$2^n+n^3=2024$
この動画を見る 

無題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2-331n-2022$が$101$の倍数となる
$ 2$桁の自然数$ n$を$1$つ見つけよ.
この動画を見る 

【短時間でマスター!!】3元1次方程式を使った2次関数の決定解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
グラフが3点(1,3)(2,5)(3,9)を通るような2次関数は?
この動画を見る 

ただの連立二元三次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは実数
\begin{eqnarray}
\left\{
\begin{array}{l}
(x + y)(x^2+y^2) = 520 \\
(x-y)(x^2-y^2) = 40
\end{array}
\right.
\end{eqnarray}
この動画を見る 

【数Ⅰ】【集合と論証】有理数、無理数の証明 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
次の条件を満たす有理数 $p, \, q$ の値を求めよ。
$(1) \, (\sqrt{2}-1)p+q\sqrt(2)=2+\sqrt{2}$
$(2) \, \frac{p}{\sqrt{2}-1}+\frac{q}{\sqrt{2}}=1$

問題2
$p, \, q$ が有理数、$X$ が無理数で、$p+qX=0$ であるならば、$p=q=0$ であることを証明せよ。
この動画を見る 
PAGE TOP