練習問題2(数検1級1次レベル? 3項間漸化式) - 質問解決D.B.(データベース)

練習問題2(数検1級1次レベル? 3項間漸化式)

問題文全文(内容文):
$a_1=-1,a_2=1$
$a_{n+2}+2a_{n+1}+4a_n=0$
一般項$a_n$を求めよ
単元: #数列#漸化式#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=-1,a_2=1$
$a_{n+2}+2a_{n+1}+4a_n=0$
一般項$a_n$を求めよ
投稿日:2020.11.27

<関連動画>

【数B】数列:a1=1,a[n+1]=(a[n]-4)/(a[n]-3) (n=1,2,...)で定められた数列について次の問に答えよ。(1)a2,a3,a4を求め一般項a[n]を推定せよ 他

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\dfrac{a_n-4}{a_n-3} (n=1,2,...)$で定められた数列について、次の問に答えよ。
(1)$a_2,a_3,a_4$を求め、一般項$a_n$を推定せよ。
(2)(1)で求めた$a_n$が正しいことを数学的帰納法を用いて証明せよ。
この動画を見る 

福田のわかった数学〜高校3年生理系010〜極限(10)解けない漸化式の極限

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(10)
$a_1=2, a_{n+1}=\sqrt{a_n+30}$ のとき、
$\lim_{n \to \infty}a_n$ を調べよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る 

佐賀大 数列のの不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.

(1)$n!\geqq 2^{n-1}$を示せ.
(2)$\displaystyle \sum_{k=0}^n \dfrac{1}{k!}\lt 3$を示せ.

佐賀大過去問
この動画を見る 

例のアレ

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{1}{1×2×3×4}+\displaystyle \frac{1}{2×3×4×5}+\displaystyle \frac{1}{3×4×5×6}$$+…+\displaystyle \frac{1}{6×7×8×9}+\displaystyle \frac{1}{7×8×9×10}$
この動画を見る 
PAGE TOP